IAEA-TECDOC-484

USER'S GUIDE FOR THE URANIUM ORE RESERVE CALCULATION SYSTEM (URAD)

A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1988

PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK

USER'S GUIDE FOR THE URANIUM ORE RESERVE CALCULATION SYSTEM (URAD) IAEA, VIENNA, 1988 IAEA-TECDOC-484 ISSN 1011-4289

> Printed by the IAEA in Austria December 1988

The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from

> INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria

Orders should be accompanied by prepayment of Austrian Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse.

FOREWORD

The URAD (Uranium Reserves and Data) system consists of four computer programs designed to facilitate the evaluation of uranium ore reserves analysis and the handling of basic uranium assay data.

URAD is designed specifically as a training tool for anyone unfamiliar with the methodology, data requirements, and/or general computer applications in the field of uranium ore reserves analysis. However, it can effectively be used in a 'production' environment involving considerable amounts of data.

The basic structure and methodology of the system are outgrowths of the methods developed by the Ore Reserves Branch, Grand Junction Office, U.S. Atomic Energy Commission during the 1960's and 1970's by a number of workers who include E.Berkoff, P.C.DeVergie, W.D.Grundy, R.J.Meehan, J.Patterson and J.H.Scott.

In order to make this system available to Member States, a contract with Mr. P.C.DeVergie was made in order to convert the system from a mainframe to a microcomputer. The Grand Junction system as it stood circa 1978 was chosen because of its high reliability and years of successful operation.

The resulting programs are written in Microsoft FORTRAN (Version 3.1) and may be run on any IBM-compatible microcomputer under DOS 2.1 (or later). The system was developed for the International Atomic Energy Agency under contract 1010.5410.231.B1 during the period February through June, 1987.

Responsible IAEA staff member was Mr. D. McCarn.

Mr. Paul C. deVergie died just before the issuance of this publication. In addition to being the person who was contracted by the Agency to develop this program for microcomputer usage, Mr. Paul deVergie was an active participant and contributor to a number of Agency meetings on uranium resources while still working with the US Department of Energy (previously US Atomic Energy Commission). In 1987 he also served as an Agency technical co-operation expert to the People's Republic of China. There is no doubt that his contribution to this publication will be greatly appreciated by workers in this field.

EDITORIAL NOTE

In preparing this material for the press, staff of the International Atomic Energy Agency have mounted and paginated the original manuscripts and given some attention to presentation. The views expressed do not necessarily reflect those of the governments of the Member States or organizations under whose auspices the manuscripts were produced.

The use in this book of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of specific companies or of their products or brand names does not imply any endorsement or recommendation on the part of the IAEA.

CONTENTS

1.0 INTRODUCTION		
1.1 Background		
1.2 History And Acknowledgments		
1.2.1 Modifications in URAD		
1.2.2 Additional Sources of Information		
1.3 General Scope Of The URAD System		3
1.4 Organization Of The User Guide		
1.5 Text Notations, Symbols, And Abbreviations		4
1.5.1 General Notations and Symbols		4
1.5.2 Notation in Field Descriptions for UDAT Formats		5
1.5.3 Abbreviations in Text and Illustrations		
1.6 URAD Benchmarks		
2.0 OVERVIEW OF THE URAD SYSTEM		7
2.1 Overall Structure		
2.1.1 Processing Primary Data Files		
2.1.2 Ore Reserve Calculation Programs		
2.1.3 Print-Output Files		
2.2 URAD Files	•••	
$2.2 \text{URAD Files} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	•••	0
2.2.1 Working File Name Protocol		
2.2.2 File Location	•••	8
2.2.2.1 Hard Disk Available		
2.2.2.2 Hard Disk Not Available		
2.2.3 Files included with Guide	• •	9
2.2.3.1 Program Execute Modules		9
2.2.3.2 FORTRAN Source Programs		9
2.2.3.3 Test UDAT Primary Data Files	•••	. 10
2.2.3.3 Test UDAT Primary Data Files		. 10
2.2.3.3 Test UDAT Primary Data Files	•••	. 10 . 10
2.2.3.3 Test UDAT Primary Data Files	•••	. 10 . 10
2.2.3.3Test UDAT Primary Data Files	• • • •	. 10 . 10 . 10
2.2.3.3 Test UDAT Primary Data Files	• •	. 10 . 10 . 10 . 10
2.2.3.3 Test UDAT Primary Data Files	• • • • • •	. 10 . 10 . 10 . 10 . 12 . 12
2.2.3.3 Test UDAT Primary Data Files	• • • • • •	. 10 . 10 . 10 . 10 . 10 . 10 . 10 . 12 . 12 . 13
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 10 . 12 . 12 . 13 . 13
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 14
<pre>2.2.3.3 Test UDAT Primary Data Files</pre>	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 14 . 15
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 14 . 15 . 15
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 15 . 15 . 16
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 15 . 15 . 16
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 16
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 14 . 15 . 15 . 16 . 16 . 17
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 14 . 14 . 15 . 16 . 16 . 17 . 17
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 17 . 17 . 17
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 17 . 17 . 17
2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 16 . 17 . 17 . 18
 2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 16 . 17 . 17 . 18 . 19
 2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 16 . 17 . 17 . 18 . 19 . 19
 2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 17 . 17 . 18 . 19 . 19 . 19
 2.2.3.3 Test UDAT Primary Data Files	 . .<	. 10 . 10 . 10 . 12 . 12 . 13 . 13 . 13 . 14 . 15 . 16 . 16 . 17 . 17 . 18 . 19 . 19 . 19 . 19

		20
4.1.1.3 Test File GAMDATV		20
4.2 Formatted Data		20
4.2.1 Sample Set Record Types		20
$4.2.1.1$ Header Records \ldots		20
4.2.1.2 Continuation Records		21
4.2.1.3 Lithologic Records		21
4.2.1.4 Directional Data Records		21
4.2.2 Format Types		21 .
4.2.2.1 Contiguous Format		21
4.2.2.2 Non-contiguous Format		22
4.2.2.3 Borehole Log Formats		
4.3 Format-free Text		22
5.0 UDAT SYSTEN PRINARY FILES, DESCRIPTION OF DATA IN SAMPL	E SETS	27
5.1 Descriptive Data Common to Records in Every Sample Set		27
5.1.1 Hole Number / Sample Set Identification		27
5.1.2 Area Number		28
5.1.3 Property Code		28
5.1.4 Record Count or Index		28
5.1.5 Example Drill Hole Location Plot		28
5.2 Descriptive Data Common to All Header Records		
5.2.1 Sample-Type Codes		-
5.2.1.1 Scales and Ranges		
5.2.1.2 Range/Scale Code Systems		30
5.2.2 Coordinates		32
5.2.2.1 North Coordinate		33
5.2.2.2 East Coordinate		33
5.2.3 Collar (or Reference) Elevation	• • • •	33
		^
5.2.4 Depth to Pit Bottom		33
5.2.5 Depth to Oxidized/Non-oxidized Contact		34
5.2.5 Depth to Oxidized/Non-oxidized Contact	••••	34 34
5.2.5Depth to Oxidized/Non-oxidized Contact.5.2.6Depth to First Sample.5.2.7Total Depth Sampled.	· · · · ·	34 34 34
5.2.5 Depth to Oxidized/Non-oxidized Contact 5.2.6 Depth to First Sample	· · · · ·	34 34 34 <i>35</i>
5.2.5Depth to Oxidized/Non-oxidized Contact5.2.6Depth to First Sample5.2.7Total Depth Sampled5.3Additional Entries Common to Borehole Log Header Records5.3.1Readout Interval		34 34 34 <i>35</i> 35
5.2.5 Depth to Oxidized/Non-oxidized Contact 5.2.6 Depth to First Sample		34 34 34 <i>35</i>
5.2.5Depth to Oxidized/Non-oxidized Contact5.2.6Depth to First Sample5.2.7Total Depth Sampled5.3Additional Entries Common to Borehole Log Header Records5.3.1Readout Interval	· · · · ·	34 34 34 <i>35</i> 35
5.2.5Depth to Oxidized/Non-oxidized Contact.5.2.6Depth to First Sample.5.2.7Total Depth Sampled.5.3Additional Entries Common to Borehole Log Header Records5.3.1Readout Interval.5.3.2Depth to Hole Water.	· · · · ·	34 34 34 <i>35</i> 35 35
5.2.5Depth to Oxidized/Non-oxidized Contact.5.2.6Depth to First Sample.5.2.7Total Depth Sampled.5.3Additional Entries Common to Borehole Log Header Records5.3.1Readout Interval5.3.2Depth to Hole Water5.3.3K-Factor	· · · · · · · · · · · · · · · · · · ·	34 34 35 35 35 35
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors	34 34 35 35 35 35 35 36 36
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors5.3.4.1 Air Correction Factor		34 34 35 35 35 35 35 36 36 37
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors5.3.4.1 Air Correction Factor5.3.4.2 Water Correction Factor		34 34 35 35 35 35 36 36 36 37 37
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors5.3.4.1 Air Correction Factor5.3.5 Dead Time Factor5.3.6 Full-Scale Deflection		34 34 35 35 35 35 35 36 36 36 37 37 37
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors5.3.4.1 Air Correction Factor5.3.5 Dead Time Factor5.3.6 Full-Scale Deflection5.3.7 Logging Unit (Log Type) Code <	34 34 35 35 35 35 36 36 36 37 37 37 37 38
5.2.5 Depth to Oxidized/Non-oxidized Contact5.2.6 Depth to First Sample5.2.7 Total Depth Sampled5.3 Additional Entries Common to Borehole Log Header Records5.3.1 Readout Interval5.3.2 Depth to Hole Water5.3.3 K-Factor5.3.4 Attenuation Factors5.3.4.1 Air Correction Factor5.3.5 Dead Time Factor5.3.6 Full-Scale Deflection <	34 34 35 35 35 35 36 36 36 37 37 37 37 38
 5.2.5 Depth to Oxidized/Non-oxidized Contact <	34 34 35 35 35 35 36 36 36 37 37 37 37 38
 5.2.5 Depth to Oxidized/Non-oxidized Contact		34 34 35 35 35 35 36 36 36 37 37 37 37 37 37 37 38 <i>38</i> 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact		34 34 35 35 35 35 36 36 36 37 37 37 37 37 37 38 <i>38</i> 47 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact	.	34 34 35 35 35 35 35 36 36 36 37 37 37 37 37 37 38 <i>38</i> <i>38</i> <i>47</i> 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 35 36 36 37 37 37 37 37 37 37 37 47 47 47 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 35 36 36 37 37 37 37 37 37 38 <i>38</i> <i>47</i> 47 47 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 36 36 37 37 37 37 37 37 38 <i>38</i> <i>47</i> 47 47 47 47
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 36 36 36 37 37 37 37 37 37 37 37 47 47 47 47 47 47 47 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 36 36 37 37 37 37 37 37 37 38 <i>38</i> <i>47</i> 47 47 47 47 47 48 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 36 36 37 37 37 37 37 37 37 37 37 47 47 47 47 47 47 47 47 48 48 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 34 35 35 35 35 36 36 37 37 37 37 37 37 37 37 37 38 <i>38</i> 47 47 47 47 47 47 48 48 48 48 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 35 35 35 35 36 36 37 37 37 37 37 38 <i>38</i> <i>47</i> 47 47 47 47 47 47 48 48 48 48 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 34 35 35 35 35 36 36 37 37 37 38 38 47 47 47 47 47 47 47 47 48 48 48 48 48 48 48 48 48 48
 5.2.5 Depth to Oxidized/Non-oxidized Contact	34 34 34 35 35 35 35 36 36 37 37 37 37 37 37 37 38 <i>3</i> <i>4</i> <i>7</i> 47 47 47 47 47 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48

6.1.1.12 Depth to Top of First Sample Interval	48
6.1.1.13 Property Code	
6.1.2 Header Record, Sample Data	
6.1.2.1 Unimetal Sample Interval Data	
6.1.2.2 Bimetal Sample Interval Data	
6.1.3 Continuation Records	-
6.1.3.1 Record Count	-
6.1.3.2 Area Number	
6.1.3.3 Hole Number	-
6.1.3.5 Bimetal Sample Interval Data	50
6.1.3.6 Property Code	50
6.2 Non-Contiguous Sample Format	50
6.2.1 Header Record	51
6.2.1.1 Entries Identical to Those in the "Contiguous" Format	
6.2.1.2 Sample type code 1	-
6.2.1.3 Sample type code 2	
6.2.1.4 Sample type code 3	-
	-
6.2.1.5 Total Depth Sampled	-
6.2.1.6 Sample Interval Data	
6.2.2 Continuation Records	
•	
6.3 Borehole Log Format	
6.3.1.1 Entries Identical to Those in the "Contiguous" Format	53
6.3.1.2 Sample-Type Code 1	53
6.3.1.3 Sample-Type Code 2	53
6.3.1.4 Sample-Type Code 3	
6.3.1.5 Total Depth Sampled (Logged)	
•	
-	
6.3.1.10 Water Correction Factor	-
6.3.1.11 Dead Time	
6.3.1.12 Full-Scale Deflection	-
6.3.1.13 Logging Unit Type Code	
6.3.2 Continuation Records	55
6.3.2.1 Readings in Inches-of-Deflection	55
6.3.2.2 Readings in Counts-Per-Second	55
6.3.2.3 Interpreted Uranium Values	56
	56
	59
7.0 THE UCON SYSTEM	69
	69
	69
· ·	69
	70
	71
	73
	73
	73
7.4.3 The "!" Instruction	73
7.4.4 Summary of Usage of the BCM Identifier Record	74
	74
	74
	75
7.5.3 Summary of Usage of the FCM Identifier Record	
The second state of the second s	12

.

7.6 Edit Instructions Within A File Control Module						75
7.6.1 General Characterisics	•	•		•		75
7.6.2 Carry-over or Negation of Edit Instructions .						76
7.6.3 The "E" Instruction						77
7.6.3.1 OPcode2 = "1"						77
7.6.3.2 OPcode2 = "2"						78
7.6.3.3 OPcode2 = "3"						78
7.6.3.4 OPcode2 = "4"						78
7.6.4 The "L" Instruction $$						
						78
7.6.5 The "W" Instruction						81
7.6.6 The "D" Instruction \ldots						83
7.6.7 The "H" Instruction						
7.6.8 The "A" Instruction						
7.6.9 The "C" Instruction						
7.6.10 Hierarchy of Edit Operations	•	•	• •	•	•	86
7.7 The "*" Terminator Records				•		87
7.8 Summary Example						87
8.0 PROGRAM URDAT						95
8.1 General Concepts and Operations						
8.1.1 Requirements						
8.1.2 Importance of Reviewing Data						95
8.2 The Print-Output File						
8.2.1 General URAD Usage of the Print-Output File .						
8.2.1.1 Naming and Location of P-0 files						
8.2.2 URAD Printing Protocol						
8.2.2.1 Vertical Print Control.	•	•	•	• •	•	3/
8.2.2.2 Horizontal Print Control	•	•	•	• •	•	97
8.2.2.3 Test for Character Width Versus Page Width						
8.2.2.4 Pagination						98
8.2.2.5 Limiting Output Lines						
8.2.2.6 Limiting Sample Sets Processed						
8.2.3 Program FORPRINT						
8.2.3.1 Program RESTPRN						
8.3 URDAT Print-Output						
8.3.1 Detailed Data Listings	•	•	•		•	99
8.3.1.1 Format Mode	•	•	•			100
8.3.1.2 Examples of Listings	•	•	•			100
8.3.1.3 Page Headers			•			100
8.3.2 Data Summaries						
8.3.2.1 Sample Set Status Summary						
8.3.2.2 "Peak-Grade" Summary						
8.3.2.3 Example of Uranium "Intensity" Plot						
8.4 Gamma-Log Interpretations						
8.4.1 Calculation of Sample Interval Depths						
8.5 Intermediate UDAT Files						
8.5.1 Usage of the Intermediate UDAT Files						
8.5.2 Description of the Intermediate Files						
8.5.2.1 File Identification Record						
8.5.2.2 Sample Set Header Record						
8.5.2.3 Sample Set Sample Record						
8.5.2.4 Sample Set Lithologic Record	•	•	•		•	106
8.5.3 "Dumping" of the Intermediate Data Files			•			106
8.6 URDAT Interactive Entries						
8.6.1 Establishing Files and Desired Output						
8.6.1.1 Print-Output File						•
8.6.1.2 UCON file						
8.6.1.3 Type of Output						
8.6.1.4 Intermediate UDAT file	•	•	•	• •	•	10/

.

8.6.1.5 Print Summary in Condensed Mode?	107
8.6.2 Print Controls for Data Listing	
8.6.2.1 Detailed Print-Output Control or "Test" Mode?	
8.6.2.2 Pagination Requested?	
8.6.2.3 Paper Page Length & Line Spacing: "Standard" or Other?	108
8.6.2.4 Specify Actual Page Length	
8.6.2.5 Line Spacing?	108
8.6.2.6 Paper Page Width?	108
8.6.2.7 Specify Actual Page Width	
8.6.2.8 Specify Print Width	
8.6.2.10 Option to Continue, Reset Print Controls, or Abort	
8.6.2.11 Option to Reduce Number of Lines Per Page	
8.6.2.12 Lines Per Page	
8.6.3 Limiting Output Listing	
8.6.3.1 Limit Number of Output Lines?	
8.6.3.2 Limit Number of Sample Sets Processed?	
8.6.4 Sample Data Status and "Peak Grade" Summaries	-
8.6.4.1 Detailed Summary Listings?	
8.6.5 Method of Referencing Sample Set Position	
8.6.5.1 Sample Interval Position Reference?	
8.6.6 Header Information	110
8.6.6.1 Name of RUN Submittor	110
8.6.6.2 Date	110
9.0 DEFINITION OF ORE RESERVE TERNS AS USED IN THIS GUIDE	117
9.1 Physical Parameters	
9.1.1 Reserves	
9.1.1.1 General Characteristics of URAD Reserve Estimates 1	
9.1.1.2 "In-place Reserves, Additional"	
9.1.2 Ore Interval	119
9.1.3 Minimum Mining Thickness	
9.1.4 Ore Cutoff	
9.1.4.1 Value-vs-Cost Cutoff	
9.1.4.2 Arbitrary Cutoff Grade	
9.1.5 Overburden Waste	
9.1.5.1 "Backslope Overburden"	
9.1.6 Mining Waste	-
	122
9.1.7.1 Underground	
9.1.7.2 Open Pit.	
9.1.8 Dilution Thickness and Grade	
9.1.8.1 Diluting to Minimum Mining Thickness	
9.1.8.2 Mining Dilution	-
9.1.9 Protore	
9.1.9.1 Protore Processing Cost and Percent Recovery 1	
9.1.9.2 Treatment of Protore in SCOR	
9.1.10 Mine Extraction Losses	124
9.1.11 Ore Processing Recovery	125
9.2 Economic Parameters	125
9.2.1 Integrated Versus Independent Operations	125
	125
	125
-	125
9.2.2.3 Mine-Mill Reclamation, Shutdown Costs	-
9.2.2.4 SCOR Cost Elements	
9.2.2.5 Preliminary Estimates	
9.2.3 Operating Costs	
9.2.4 Capital Costs	
9.2.4.1 Inter-ore Mining Waste-Costs	
pretite receive this sy made board is a same same same i	

10.0 INTERACTIVE ENTRY	1 29 129
11.0 GENERAL PROCEDURES FOR RUNNING THE RESERVES PROGRAMS	
11.1 Preliminary Steps	132
11.2 Running the Programs - Standard Interactive Entries	133
11.3 Contents Of The Intermediate Data File	
11.3.1 Intermediate Data Header Output	135
11.3.2 Sample Interval and Lithologic Data	
12.0 PROGRAM RESUV	138
12.1 General Concepts And Operations	
12.2 Reserves-Analysis-Options	139
12.2.1 Option 1	
12.2.2 Option 2	
12.2.2.1 Calculation of Vanadium Grades	
12.2.3 Option 3	
12.2.4 Option 4	
12.3 Running The Program - Interactive Input Requests	
12.3.1 Standard Initial Entries	141
12.3.2 For All Options	142
12.3.3 Options Depending On Reserve-Type	142
12.3.3.1 Option 1	142
12.3.3.2 Option 2	142
12.3.3.3 Option 3	143
12.3.3.4 Option 4	
12.3.4 Vanadium Dilution Grade	143
12.3.5 Output Options	
13.0 PROGRAM ORSAC	146
13.1 General Concepts And Operations	146
13.2 Program Input Parameters	148
13.2.1 Combining Thickness	148
13.2.2 Minimum Grade Cutoff	148
13.2.3 Tonnage Factor	148
13.2.4 ALPHA1 Constant	148
13.3 Options	148
13.3.1 Program Run Options	148
13.3.1.1 Option 1: Uranium, Combined Intervals at Equal Thick-	
ness	148
13.3.1.2 Option 2: Uranium, Total Sample Interval Above Minimum	
	149
13.3.1.3 Option 3: Vanadium, Combined Intervals at Equal Thick-	
ness	149
13.3.1.4 Option 4: Vanadium, Total Sample Interval Above Mini-	-
	149
13.3.2 Program Output Options	-
13.3.2.1 Option 1: Output of Combined Assays	
13.3.2.2 Option 2: Output Fractional Tonnage	
13.3.2.3 Option 3: Output of Statistical Parameters and	
Chi-Square Test.	150
13.3.2.4 Option 4: Output of Tons and Average Grade	
13.3.2.5 Option 5: Summary For All Blocks	
13.4 Running The Program - Interactive Entry	
13.4.1 Standard initial Entries	
13.4.2 Program Control Entries	
13.4.2.1 ->Reserves Analysis Option	
13.4.2.2 -> Combining Thickness	
13.4.2.3 -> Minimum Cutoff Grade	150

13.4.2.4 -> Tonnage Factor		
13.4.2.5 -> Additive Constant		151
13.4.2.6 -> Output Option		151
		-
14.0 PROGRAM SCOR		155
14.1 Concepts And General Operations		
14.2 Ore Reserves Analysis Methodology		
14.2.1 Ore Interval Analysis, General		
14.2.1.1 Cutoff Grade Determination		
14.2.2 Open Pit Analysis		
14.2.2.1 Determine Ore Intervals		
14.2.2.2 Determine Protore Intervals		
14.2.2.3 Determine Category of Mining Waste Intervals		
14.2.2.4 Cost Vs Value (Unit Value)		159
14.2.2.5 Sample-Set Output from Open Pit Analysis		160
14.2.2.6 Detailed sample-set output		
14.2.2.7 Summary sample-set output.		
14.2.3 Underground Analysis		
14.2.4 Block Ore Reserves Summary		
14.2.4.1 Ore Reserve Quantities	• •	102
14.2.5 SCOR Plot File		
14.2.5.1 Structure of the Plot File		
14.2.6 Grade-Tonnage Distribution Analysis		
14.3 Options and Interactive Entries		167
14.3.1 Standard Entries		168
14.3.2 Plot Output File		168
14.3.3 Output Of Ore-Interval Anaylsis		
14.3.3.1 Choice of Ore Interval Position Reference		
14.3.4 Calculation And Output Of The G-T Distribution Analysis		
14.3.4.1 Choice of Area-of-Influence Method		
14.3.4.2 Combining Thickness		
14.3.5 Option For Reserves Calculation By Ore-Interval Analysis		
14.3.6 Open Pit Versus Underground Analysis		
14.3.7 Integrated Versus Independent Options		
14.3.8 Ore Cutoff Grades		
14.3.8.1 Number of Cutoff Grades		
14.3.8.2 Arbitrary versus Cost/Price Cutoff		170
14.3.9 Standard Physical Parameters and Operating Cost Entries		170
14.3.9.1 Ore Processing Operating Cost		170
14.3.9.2 Ore Processing Recovery Rate		170
14.3.9.3 Uranium Prices		170
14.3.9.4 Minimum Mining Thickness		170
14.3.9.5 Upper Dilution Thickness		171
14.3.9.6 Lower Dilution Thickness		171
		171
14.3.9.8 Direct Mining Cost		171
14.3.9.9 Applicable Indirect Mining Cost		171
14.3.9.10 Haulage Cost		171
14.3.9.11 Ore Royalty Cost		171
14.3.10 Open-Pit-Specific Factors		171
14.3.10.1 Overburden Removal Cost		171
14.3.10.2 Option for Charging Open Pit Typel Waste Removal Co		172
14.3.10.3 Option for a Type2 Waste Removal Cost		172
14.3.10.4 Protore Option		172
14.3.11 Underground-Specific Operation Factors		173
14.3.11.1 Option for Charging Underground Typel Waste Remova		
Cost		173
14.3.11.2 Minimum Typel ("Stope") Waste Thickness		

-

14.3.11.3 Maximum Type1 ("Stope") Waste Thickness		٠	•	•	•	٠	•	173
14.3.11.4 Cost for Removal of Typel Waste		•	•	•	•			174
14.3.12 Open-Pit-Specific Capital Cost Factors	•	•	•	•	•		•	174
14.3.12.1 Pit Slope Angle	•	•	•	•	•		•	174
14.3.12.2 Pit Perimeter Length								
14.3.12.3 Underground-Specific Capital Cost								
14.3.13 Primary Development Cost								
14.3.14 General Capital Costs								
14.3.14.1 Ore Processing Capital Cost								
14.3.14.2 Mine Plant and Equipment Capital Cost								
14.3.14.3 "Other" Capital Cost	•	٠	•	•	•	•	٠	175
15.0 APPENDIX A: THE GANLOG METHOD								187
15.0 APPENDIX A: THE GANLOG NETHOD								
15.1 Introduction	•	•						187 188
15.1 Introduction								1 <i>87</i> 188 188
15.1 Introduction								1 <i>87</i> 188 188
15.1 Introduction								1 <i>87</i> 188 188 189
15.1Introduction		• • •		• • •	• • •			1 <i>87</i> 188 188 189 197

.

<u>1.0 INTRODUCTION</u>

1.1 BACKGROUND

The URAD (Uranium Reserves and Data) system consists of four computer programs designed to facilitate the evaluation of uranium ore reserves analysis and the handling of basic uranium assay data. The programs are written in Microsoft FORTRAN (Version 3.1) and may be run on any IBM-compatible microcomputer under DOS 2.1 (or later). The system was developed for the International Atomic Energy Agency under contract 1010.5410.231.Bl during the period February through June, 1987. The documentation was edited by D. McCarn of the IAEA in March, 1988. The basic structure and methodology of the system are outgrowths of methods developed by the Ore Reserves Branch, Grand Junction Office, U.S. Atomic Energy Commission (GJO/AEC) during the 1960's and early 1970's.

URAD is designed specifically as a training tool for anyone unfamiliar with the methodology, data requirements, and/or general computer applications in the field of uranium ore reserves analysis. However, it can effectively be used in a 'production' environment involving considerable amounts of data.

Only a basic working knowledge of DOS 2.1 is needed to maintain the system and run the programs.

1.2 HISTORY AND ACKNOWLEDGMENTS

The computational algorithms, and output forms in URAD were in, large part converted directly from programs and utility subroutines developed GJO/AEC. The history of this development is reviewed briefly to provide readers with some continuity for reference between the URAD system and the original publications cited in this guide.

During the period 1960-1968 GJO/AEC developed the following computer programs:

GAMLOG (J.H. Scott, 1962) The interpretation of gamma-ray log data using a digital computer. U.S. Atomic Energy Commision, GJO, RME-143.

DOLLAR (J. Scott, 1963) The Dollar Program For Calculating Uranium Ore Reserves. U.S.A.E.C., GJO, RME-142.

GRADE (J. Scott, 1963) The Grade Program For Calculating Uranium Ore Reserves. U.S.A.E.C., GJO, RME-145.

ORSAC (R.J. Meehan and W.D.Grundy, 1964) Estimation of Uranium Ore Reserves by Statistical Methods and a Digital Computer. U.S.A.E.C., GJO, RME-183.

SCOR (P. deVergie, 1962) Calculation of underground or open pit reserves using grade cutoffs arbitrarily assigned or determined by

economics. Paper presented to the Colorado Mining Association in 1968.

(A review of the GJO computer applications was presented in 1964 by J. Patterson, P. deVergie, and R.J. Meehan at the 1964 International Symposium on Computer Applications in the Minerals Industry, Colorado School of Mines, Golden, Colorado)

Each of the above programs was initiated somewhat independently at a time when gamma-log data were being taken from gamma-ray logs using "hand" methods, and each had its own particular method for inputting and processing the data.

The period 1962-1969 saw a rapid increase in utilization of automatic digitizing of gamma-log data. The GJO system for automatic digitizing was described in:

Young, H.B. and deVergie, P.C., 1963, Preparation of Gamma-ray Log Data for IBM Card Punching, U.S.A.E.C., GJO, RME-144.

A set of routines (PEDAT, deVergie, 1963) was developed to serve as a standard data input program to read in and edit various types of data and was incorporated into SCOR, ORSAC, and GRADE (but not into DOLLAR).

When the CDC 3100 computer was installed at GJO in 1969, program MDDAT (deVergie, 1969) was developed as a 'front-end' module which processed all data and created secondary data files (binary) prior to processing by ore reserves programs. MDDAT included the GAMLOG interpretation routines. Programs ORSAC and SCOR were converted with some modifications.

DOLLAR and GRADE were combined into GRADEV (R.J.Meehan), to which was added the additional capability of handling vanadium assays. The PEDAT routines were modified and then added to each ore reserve program in order to process and edit the secondary files created by MDDAT.

Modifications and enhancements continued on these programs up through 1979, when the CDC 6600 was installed at GJO. In designing URAD, it was judged that the GJO system, as it stood circa 1978, would be most useful point at which to begin. A considerable amount of the material presented herein was was originally never fully documented due to the ongoing changes and additions which were constantly taking place.

1.2.1 Modifications in URAD

For URAD, the MDDAT program was modified and revised into program "URDAT" (URanium DATa system); The original diverse formats for basic sample data were revised and standardized, and a new format ("Q") was added. The computational algorithms in GRADEV (renamed "RESUV" (REServes for Uranium and Vanadium) and ORSAC were left intact.

SCOR was considerably modifified; and the PEDAT routines were revised and enhanced. The major changes in the all the programs occurred in the processing of the data and input of program parameters. The file handling and data input procedures were completely revised to form the UCON system, which is altogther new. Input of parameters into the ore reserve programs was standardized to the extent feasible, and all such input was made interactive except for the UCON file handling and data edit instructions.

Output features were redesigned specifically for microcomputer printer capability.

1.2.2 Additional Sources of Information

The following publications were excellent sources for information relating to ore reserves and basic interpretation of gamma-log data:

Practical Borehole Logging Procedures for Mineral Exploration with Emphasis on Uranium, I.A.E.A., Vienna, Techn. Report Series No. 259.

Methods for the Estimation of Uranium Ore Reserves (an Instruction Manual), I.A.E.A, Vienna, Technical Report Series No.255.

1.3 GENERAL SCOPE OF THE URAD SYSTEM

1.4 ORGANIZATION OF THE USER GUIDE

This guide includes the following major sections:

The **OVERVIEW OF THE URAD SYSTEM** (Section 2.0) shows the major elements of the URAD system.

The **REVIEW OF SAMPLE DATA** (Section 3.0) describes the general type of sample data found in URAD and includes discussions on radiometric logging data and disequilibrium correction of radiometric data.

A complete description of the file structure and sample type formats of the UDAT basic sample data files is provided under: UDAT SYSTEM -- PRIMARY (BASIC) FILES, GENERAL FILE STRUCTURE (Section 4.0);

UDAT SYSTEM -- PRIMARY FILES, DESCRIPTIVE DATA FOR SAMPLE SETS (Section 5.0); and,

UDAT SYSTEM -- PRIMARY FILES. INDIVIDUAL DATA FORMATS (Section 6.0).

A complete description of the UCON system for file access and sample editing is given in **THE UCON SYSTEM** (Section 7.0).

PROGRAM URDAT (Section 8.0) explains the initial processing of the primary UDAT files to obtain standard output listings and gamma-log interpretations of radiometric data, and to create intermediate UDAT files which are used by the ore reserves programs - RESUV, ORSAC, and SCOR.

A general description of the parameters which must be input interactively to the ore reserve programs, is given in the **DEFINITION OF ORE RESERVES PARAME**-**TERS** (Section 9.0).

INTERACTIVE ENTRY OF PROGRAM CONTROLS AND PARAMETERS (Section 10.0) reviews the method used by URAD for entering program parameters interactively (i.e. during program execution) on the console.

Preliminary steps required before running an ore reserve program are reviewed under **GENERAL PROCEDURES FOR RUNNING THE ORE RESERVES PROGRAMS** (Section 11.0). Also described is the interactive entry of those parameters which are standard to all programs.

The ore reserve calculation programs **RESUV** (Section 12.0), **ORSAC** (Section 13.0) and **SCOR** (Section 14.0) are described in detail. These sections include: the concepts and operational features of each program; detailed instructions for running the programs; and sample output from test cases.

APPENDIX A (Section 15.0) describes the concepts used in the GAMLOG method of interpreting borehole radiometric data and is excerpted from RME-145 (Section 1.2).

APPENDIX B (Section 16.0) is a listing of file 'STARDAT', a test primary sample data file containing a set of actual gamlog data which are identified for a fictitious property.

APPENDIX C (Section 17.0) contains a test run and output list by the URDAT program from test data contained in the supplied diskettes.

Section 18.0 contains an index of terms which, it is hoped, will be useful to the user of the URAD system.

1.5 TEXT NOTATIONS, SYMBOLS, AND ABBREVIATIONS

1.5.1 General Notations and Symbols

- Single quotes (' ') are used only when referring to data (in a UCON file) which specifically require enclosing single quotes as part of the actual data entry.

- Double quotes ("") may be used for new or "colloquial" terms, types of data elements, and descriptions of codes and actual data entries. However, double quotes are never part of any actual data either in files or as interactive entries.

- Underlining ("_") is used to indicate a blank (character) when giving examples of alphanumeric fields.

- Bold Face is used for highlighting terms or phrases, or for warning comments.

- Percent is denoted by "%".

- A small "*" in equations denotes multiplication.

- A slash "/" in equations denotes division.

- A plus "+" in equations denotes addition

- A minus "-" in equations denotes subtraction.

- Two asterisks "**" in equations denote exponentiation (power).

 $- '' \{ < (--) > \}''$ in equations denotes hierarchy of operations.

- "Alphabetic" characters refer to the letters "A" through "Z".

- "Alphanumeric" characters refer to the entire ASCII character set, including numbers, characters, and special characters (but not "alternate" characters).

- A program "RUN" is the complete processing of all the blocks and files defined in a UCON file. A RUN begins with the entry of the program name and ends when all blocks in the UCON file have been processed and program operations completed.

 \sim A "block pass" is the complete processing of one block of data as defined by a UCON file.

- A "default" value or file name is one which will be used in a program RUN if some optional value or name is not supplied.

- All data currently used in the program are in the "English" weight / measure system; one ton = 2000 pounds.

1.5.2 Notation in Field Descriptions for UDAT Formats

A "field" is the location on a record in which a particular data element is placed. In fixed-field formats such as required by the UDAT files, a field is specified by the column numbers of the record. In partially-free-format records such as in the UCON (partially) and RNGTBL files, it may be referred to by its position with respect to a specific code and/or to other fields.

The following field notatation is used in this text:

- "C" denotes "column" and the number following "C" is the exact column number of a field in a given record; when a field consists of more than one column, the first and last columns are enclosed in parenthesis; example "C (5-8)" means "columns 5 through 8", "C22" means "column 22".

- "D" denotes the number of places to the left of the last column of a numeric field at which an assumed decimal is positioned; example "D = 2" means that a decimal is assumed 2 places to the left of the last column of the field ("one place to the left" means "immediately to the left").

- "E" denotes the type of data entry, either "A", "N", or "B", where,

- "N" denotes "numeric, i.e. the numbers "0" through "9". Unless a "D" (above) is specifically mentioned, no decimal is assumed.

- "A" denotes alphanumeric data unless otherwise specified.

Note: The special notations described above should not be confused with actual codes used as data.

1.5.3 Abbreviations in Text and Illustrations

The following are abreviations used throughout the text:

```
Blk = block
BLTH = bottom lithologic unit
BOTEL = bottom elevation
CE-fields = entries in columns 13 through 72 of
            continuation records
Coord. = abbreviation for coordinates
CPS (cps) = counts per seconds
Cu. = cubic (**3)
DT = dead time
Elev. = elevation
Fmt. = format
Ft. = feet
grd. = grade
LOGe = logorithm to the base e
max. = maximum
min. = minimum
mng. = mining
ms = microseconds
MV = maximum value
PITBT = depth to pit bottom
sec = seconds
sq. = square (**2)
thk. or
thick. = thickness
TLTH = top lithologic unit
TOPEL = top elevation
tot. = total
yd(s) = yard(s)
```

1.6 URAD BENCHMARKS

Please note that benchmarks for all programs are contained in the supplied diskettes and include input and output results. Please compare the results of the benchmark input data with each of these files to assure correct operation.

2.0 OVERVIEW OF THE URAD SYSTEM

2.1 OVERALL STRUCTURE

The overall structure of URAD is charted on Figure 2.1.

2.1.1 Processing Primary Data Files

The system for storing the basic uranium sample assay data (Section 3.0) used in URAD is termed "UDAT" (Sections 4.0, 5.0, & 6.0) and requires the data to be established in **UDAT files** in one of several "standard" formats. Basic data may be entered (Figure 2.1, step 1) into the UDAT files from the keyboard, or by "automatic-digitizing" procedures, and are stored permanently in **Primary** (basic) UDAT files. UDAT files may be on hard or floppy disk. If data already exist on some medium (ex: floppy disk) which is compatible with the microcomputer hardware system but are not in the formats required by the UDAT system, they may be entered into a UDAT file by writing a "con version" program which will arrange them in one of the UDAT formats.

UCON Files (Section 7.0) are small temporary files (Figure 2.1, step 2) created to provide instructions for selecting, editing, and submitting to URDAT any of the data from one or more primary UDAT files. They are also created (step 5) to provide similar instructions relating to the intermed iate UDAT files used as input to the ore reserves programs. When so used, they serve to define the blocks (Section 7.1.2) for which reserves will be calculated. A UCON file must be available each time any one of the four main programs is run and will apply to one specific RUN only. However, the same UCON file could be used with each of the reserves programs if the ap plicable sample data were to be identical.

Program URDAT (Section 8.0) processes (Figure 2.1, step 3) the primary UDAT files to:

1. Create output listing and data summaries (see print-ouput file, below).

2. Carry out any required interpretation of radiometric data, using the GAMLOG (Section 15.0) method.

3. Create standardized Intermediate UDAT files which are used for data input to the RESUV (Section 12.0), ORSAC (Section 13.0), or SCOR (Section 14.0) ore reserve programs. These intermediate files may be saved or deleted at the option of the user. During a single URDAT RUN, any number of primary UDAT files may be processed but only one intermediate UDAT file may be created.

2.1.2 Ore Reserve Calculation Programs

The ore reserves calculation programs -- RESUV, ORSAC, and SCOR -- are each run independently (Figure 2.1, step 6). Each utilizes an appropriate UCON

file to obtain sample data from the intermediate UDAT files, and any number of such files may be processed in one block pass (and during one RUN).

The reserves programs carry out the ore reserve calculations and create output listings of the results (see print-output file, below).

Program SCOR optionally creates "USUM" files which contain summaries of the ore interval analysis on a given set of data under a given set of physical and economic criteria.

2.1.3 Print-Output Files

Print-output ("p-o") files (Section 8.2) are those files (excluding the intermediate UDAT files) on which output of results from the various programs will be placed. P-o file names are assigned interactively at the start of program execution. If the printer is designated as the p-o file, then the results are printed directly on the printer during program execution. If some other file is designated, then results must be printed separately, (after program execution is completed) using the utility program FORPRINT (Figure 2.1, steps 4 & 7; Section 8.2.3).

Since a variety of print control commands not standard to FORTRAN are sent to the printer in URAD, program RESTPRN (Section 8.2.3.1) is provided to restore the printer to standard if a RUN is abnormally aborted while printing is taking place. Section 8.2 provides detailed information on print output options.

2.2 URAD FILES

2.2.1 Working File Name Protocol

UDAT, UCON, and print-output p-o files may be considered as "working files". Any names may be assigned to URAD working files, providing they follow DOS convention; however, a file name may not be referenced by more than 15 characters. This allows the inclusion of a device name d: but not directory or subdirectory names. Examples of URAD working file names are "FILENAME", "A:FILENAME", "FILENAME.DAT", "A:FILENAME.BIN".

The naming, saving, backup, transfer and/or deleting of any URAD files is left entirely up to the user, except that URAD does provide default names for the UCON file and print output file to be used in a run.

URAD does not automatically provide filename extensions .xxx to file names assigned by the user. If extensions are used, it is suggested that the extension ".DAT" be given to primary UDAT files, and ".B" or ".BIN" to intermediate UDAT files.

2.2.2 File Location

When UDAT or UCON files are entered interactively during program execution, they must always be available either in the current working directory of the default drive, if no device name is provided, or in the root directory of the specified disk, if a reference device name is included. Similarly, p-o files will be created or accessed either in from the working directory of the default drive or the root directory of a specified disk.

File "RNGTBL" is a special file; when needed (Section 5.2.1.2), it must always be in the current working directory of the default drive.

2.2.2.1 Hard Disk Available

With a hard disk, it is most convenient to keep the .EXE modules, the working files, and RNGTBL all in one directory -- always using it as the working directory when running the programs. Any available additional disk drives may be used as optional working file storage.

Optionally, the .EXE files may be in one directory example: "URX" and the working files and RNGTBL in another example: "URW". Then, URW may be used as the working directory and the .EXE modules may be accessed by first issuing the DOS command "PATH $\URX"$ (or setting the path in an autoexec batch file).

To run any of the programs, simply issue the DOS program execute command i.e. type the program name & press RETURN .

2.2.2.2 Hard Disk Not Available

With a single or dual floppy drive (but no hard disk) system, the ".EXE" modules may be kept on one set of disks, and other disks used to hold the working files -- in the disk root directory.

To run a program (after booting the system), simply enter the disk containing the desired program .EXE module into the default drive and issue the DOS program execute command. When the console monitor message to specify file "OUTPUT" appears, remove the program disk and enter the disk(s) containing the required UCON file and primary or secondary UDAT file(s), or, for program FORPRINT, the p-o file to be printed. If URDAT is being run, the disk in the default drive must contain file RNGTBL (if needed).

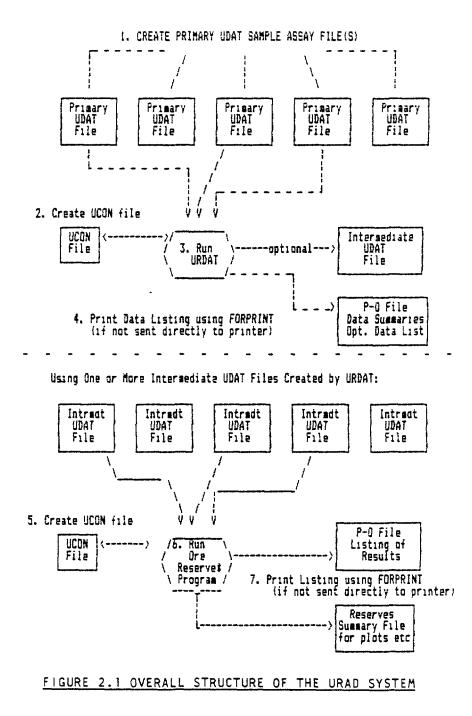
2.2.3 Files included with Guide

The following files are included with this Guide.

2.2.3.1 Program Execute Modules Execute modules compiled for use with a mathematics co-processor are: URDAT.EXE, RESUV.EXE, ORSAC.EXE, SCOR.EXE, FORPRINT.EXE, and RESTPRN.EXE.

For use in a microcomputer system lacking a math co-processor, the above are optionally available as: URDAT2.EXE, RESUV2.EXE, ORSAC2.EXE, SCOR2.EXE, FORPRIN2.EXE, and RESTPRN2.EXE.

2.2.3.2 FORTRAN Source Programs FORTRAN source code is available for URDAT, RESUV, ORSAC, SCOR, FORPRINT, and RESTPRN. 2.2.3.3 Test UDAT Primary Data Files


GAMDAT examples of the various primary data formats GAMDATV for testing bimodal (uranium and vanadium) format STARDAT 230 sample sets from a hypothetical uranium deposit STARDATL for testing lithologic data

2.2.3.4 Test UCON files

UCON1 use for test URDAT RUN on file GAMDAT UCONL use for test URDAT RUN on file STARDATL UCONS use for test URDAT RUN on file STARDAT UCONV use for test URDAT RUN on file GAMDATV

2.2.3.5 Test UDAT Intermediate Data Files

STARDATL.B created by running URDAT using UCONL STARDAT.B created by running URDAT using UCONS GAMDATV.B created by running URDAT using UCONV

11

3.0 REVIEW OF URANIUN SAMPLE DATA

3.1 GENERAL

When the utilization of computers as an aid to ore reserves analysis is first introduced to any individual or organizational entity, prime interest is usally focused on the ore reserves computations themselves. The main concerns are technical justification, reliabity of results, the advantage of one particular method over another, computational speeds, the form of output, and so forth. However, once the computer is adopted as a working tool, the users invariably find that the handling of data begins to occupy a seemingly disproportionate amount of their time and effort. As the computer utilization increases and the amount of data grows larger, more and more work is expected of the computer, and attendant data manipulation becomes increasingly difficult and complex.

Data entry and storage are a common facet of all computer applications. In the working environment, data associated with minerals, especially uranium, presents some unique problems:

1. There is great diversity in type, collection method, and form of data.

2. There are a considerable number of ways the data may be used.

3. The data do not generally lend themselves to easily available standard data base management systems.

For an individual or group desiring the flexibility of handling any type of data which may become available, there is a major benefit in establishing a standard data system which will contain all the information needed but, at the same time, is not unwieldy and may be easily accessed.

The following discussion of the URAD data system is therefore intended not only as a guide to running the programs themselves, but also as a forewarner of future needs and problems which may be encountered by the user in the development of any mineral sample data base.

The system itself is, to some extent, a "holdover" from the punch-card/mag netic tape environment (and associated data reduction methods) which prevailed in the 1960's and 1970's. Sample data are initially entered from the console keyboard and stored in 80-column records, and strict rules on data format apply. However, word-processing systems currently available for use with microcomputers greatly facilitate the entry, edit, and listing of the data. If applicable data already exist in "machine-readable" form (Section 3.3.1), they may be converted to the required formats.

The automatic digitizing of data from gamma-ray log strip charts also provides a relatively quick method of enetering data into the files. Specific techniques for such procedures are not discussed in this guide, as they depend to a large extent on the equipment employed. However, the parameters and coding systems required by URAD for such digitized information are de tailed in Sections 5.0 & 6.0. The next step up from the current URAD system would be one which allowed interactive entry of basic sample data and stored these data in a more compressed form. However, it would be easy to convert both the UDAT primary and secondary files to any other data base system

3.2 URANIUM SAMPLE DATA USED IN URAD

3.2.1 Definitions Used in Guide Relating to Sample Data

The general term **sample** as used herein refers to a linear extent of some material and its corresponding representative mineral content. In this Section, and Sections 4, 5, & 6, the term **sample assays** refer directly to the percentage or "grade" of a "mineral" (actually a specific element or compound) in the total material, as determined through laboratory analysis. The minerals applicable to URAD are uranium (U, with grade generally expressed to the nearest 1000'th of 1 percent U308) and vanadium (V, with grade expressed to the nearest 100'th of 1 percent V205).

Chemical uranium assays refer to assays for which an estimate of the actual grade has been made either directly or indirectly; this would include chemical, fluorometric, or neutron-activation, analyses. **Radiometric** (or "radiometric-equivalent") assays are those based solely on observed radiation (usually gamma-radiation) with the assumption that the represented uranium and its daughter products are in radiometric equilibrium (see Section 3.4). (In the sections describing the ore reserve programs, the term "assays" is used generically for all sample data.)

Sample **readings** refer to numeric values from which sample grades may ultimately be determined.

Each sample consists of a **sample interval** which is defined by **thickness** in feet, and mineral **grade** -- either an actual grade (example: percent U308) or a "reading". In the latter case, the factors required to make the estimate are included in the **sample description** (below).

3.2.2 Sample Sets

Samples suitable for effective use in ore reserves analysis are usually grouped in approximately linear "sets", each set consisting of one or more samples. A **sample set** includes a **description**, i.e. one or more symbolic identifiers (hole number or sample number, property number) and sufficient information to accurately assign any sample in the set to a position in some three-dimensional coordinate reference system. A single "point of origin" suffices to establish this if the set is vertical. If the set is not vertical, then additional information must be provided as to its direction from the origin point.

Examples of sample sets are: a series of core samples from a bore hole; a series of samples from one total channel sample; measurements of radiometric "counts-per-second" from a bore hole.

A sample set may be further characterized by geologic environment.

A **data set** is simply a group of sample sets which have some generic commonality from the user's point of view. A **data file** is a specifically named DOS computer file containing sample set data in structured form.

3.2.3 Uranium Sample Data

The basic sample data used in uranium ore reserves calculations consist mainly of:

1. Radiometric data from logs of surface or underground boreholes.

2. Interpretation of the actual uranium values represented by the above. These may be in the form of: 1) values at equal spacing along the borehole; or, 2) interpretations of thickness and average grade of total anomalies.

3. Chemical or radiometric assays of core or cuttings from boreholes.

4. Chemical or radiometric assays of representative samples of materials (example: "channel" samples) from mine workings.

5. Radiometric or "direct" measurements from "face-scanning" in mine wor kings.

3.3 BOREHOLE RADIOMETRIC LOGGING DATA

The term "borehole radiometric logging" refers to the act of measuring the amount of radioactivity received by a sensor moving along a borehole; and a "radiometric log" (or "gamma log") is the resulting record of the radio activity measurements. Such measurements are termed "borehole radiometric log-ging data", or simply "gamma-log" data.

For this section, and other sections dealing with gamma-log data, it will be useful for the reader to refer to Section 17.

During the past 35 years, there has been considerable evolution in the meth ods of both handling and "interpreting" such data, i.e. estimating the ura nium grades represented by them. These methods have progressed from paperand-pencil recording and simple factoring of individual values read from hand-driven instruments to direct recording of computer-calculated uranium estimates directly onto magnetic tape in sophisticated mobile logging units.

Since gamma-log data are not always immediately available in the most up-todate or advanced form to those responsible for reserve calculations, a brief review is warranted of the various forms in which they may be received.

The term "readings" refers to measurements of the radioactivity at given positions in the borehole recorded either directly during the logging procedure or subsequently measured from the continuous curve representing the radiometric amplitude on a printed "strip" log (Section 3.3.4). Readings are almost always taken at regular, consecutive intervals, usually 0.5 or 1.0 feet along the length of the borehole. Readings may be in counts-per- second (cps) or in inches-of-deflection (when measured from a "strip" log). URAD uses the "GAMLOG' method (Scott, 1963) described in Section 15 to interpret such data.

The term "interpreted" refers to gamma-log data for which an estimate of uranium content has been made. "Uninterpreted" refers to gamma-log data requiring further processing to obtain an estimation of the uranium content represented by the data.

"Descriptive" data which must be provided along with uninterpreted radiometric logging data from any borehole are: 1) the K-factor; 2) the applicable attenuation factors; 3) the dead-time correction factor; 4) the interval at which the readings were taken; 5) the depth from the top ("collar") of the borehole at which the first reading was taken; 6) the depth to any natural water and/or drilling fluid standing in the hole at the time the log was made, as well as information on hole casing, if appplicable. These factors are important since they must also be entered as data with each sample set of gamma-log data (Section 5.3) in the UDAT files.

In the following summary of the most commonly available types of gamma-log data, brief reference is made to the format(s) used in entering them in the URAD data files. These formats are described in detail in Section 6.

3.3.1 Direct "Readout" to Machine-Readable Media

As of this date, "state-of-the-art" radiometric logging units in commercial use record (or "read out") radiometric readings, in "counts-per-second" ("cps") directly onto a "machine-readable" ("computer-readable") medium -usually magnetic tape. Some even have the capability of interpreting and converting the readings to estimated uranium values during the actual logging process. During the early 1980's, logging sensors were developed to measure the actual uranium content in boreholes, but these methods have not yet been put into widespread commercial use for uranium exploration the United States.

In order to utilize data on magnetic tape without intervening manual transcription, the microcomputer must either have an interface with an appropriate magnetic tape drive or reader, or the data must be "down-loaded", on a different computer, to a medium (floppy disk, hard disk, or other) which is compatable with the given microcomputer system.

A utility program may be easily written to convert such data (or any other uranium sample set data which is not in the UDAT form) to the required UDAT formats. During the period when the precursor to the URAD system was in full operation, this type of situation was the rule rather than the exception. It is far easier to convert such data to one of the UDAT formats than to write an input program such as URDAT for each new format type that is encountered.

A discussion of the methods involved in the above processes is outside the scope of this guide.

3.3.2 Direct Readout to Printed Media

Cps readings recorded during the logging process are sometimes printed directly on to paper tape or are printed from magnetic tape. Such data may be intered into the UDAT files using the "FLU" borehole log format (Section 6.3).

3.3.3 Interpreted Values

Listings of estimated uranium values based on interpretations made by some other computer are sometimes available from the logging company or some other source. These may be entered into the UDAT files using the "FnQ" borehole format (Section 6.3) or the "contiguous" format (Section 6.1).

3.3.4 Readings from Printed Radiometric Strip Logs

The term "printed radiometric strip log" or "strip log" is used in this guide to describe the continuous curve automatically drawn, usually by pen and ink (stylus) on scaled chart paper, to represent the amplitude of radio activity measured in the borehole during logging procedures. The general definition of the strip log includes the chart paper and associated back ground material as well as the curve itself. If direct readout of cps, on some readable medium, is not available, then the printed radiometric strip log provides the only source of data by which to estimate the radioactivity and corresponding uranium content represented in the borehole.

Two types of uninterpreted readings may be taken at points along the continuous radiometric amplitude curve on a strip log.

1. "Inch-Deflection Readings" are measured from the base line of the log to the radiometric amplitude curve either by hand or by automatic "digitizing" methods. These are entered into the UDAT files using the "A-E,1" or "Fl1" borehole log formats. If they are automatically digitized onto microcomputer disk then a simple "utility" computer program can be written to convert the data into the "A-E,1" or "Fl1" formats.

2. Transparent overlays may be designed to allow the reading of points along the amplitude curve in terms of cps, either uncorrected or corrected for dead time. Such readings are entered using the "FIU" or "FIC" formats.

In either case, if hand/overlay methods are utilized, the readings can be directly transcribed into the data files using the console typewriter.

3.3.5 Total Anomalies

If a computer is lacking to interpret individual readings taken on a 0.5 or 1.0-foot basis, the total thickness and average grade represented by total anomalies may be estimated from printed logs or from tabulations of cps readings using the method described in Technical Report Series No. 259, "Practical Borehole Logging Procedures for Mineral Exploration with Emphasis on Uranium", IAEA, 1986 (Section 1.2.2). Further reading on the subject published by the IAEA is Technical Report Series No. 212, "Borehole Logging for Uranium Exploration", IAEA, 1982.

Section 17) Uranium values estimated in this manner are most easily entered into the UDAT files by using the "non-contiguous" format (Section 6.2).

16

REVIEW OF URANIUM SAMPLE DATA

3.3.6 Inch-Deflection vs Counts-per-Second Readings

In the current URAD format system, inch-deflection readings are assumed to be recorded to the nearest one-hundredth of an inch. When the radiometric count rate exceeds around 50,000 cps, there is a minor, but noticeable difference in the interpreted U308 values derived from actual cps and those derived from the cps calculated by: cps=inches-deflection x cps/inch, where, cps/inch is based on the appropriate logging range scale. This may be observed in file "GAMDATX" contained in the supplied diskettes, by comparing the high grade values of sample set "TEST 4" with those in "TEST 6" (see also comments in Section 5.4).

The effect is simply caused by the difference in the number of possible significant digits in the cps readings as opposed to those available in the combination of inch-deflection and range-scale values; the latter has less.

In practice, it was found futile to attempt to digitize readings to the nearest 1000th of an inch from strip-logs, since the stylus trace of the radiometric amplitude curve has a width generally greater than 100th of an inch. However, if it were desired to record to the nearest 1000th of an inch, then a new format, say, "i" (instead of "!") could be added to allow for the extra digit in the continuation record CE-fields.

3.4 RADIOMETRIC DISEQUILIBRIUM

3.4.1 General Concepts

The uranium occurring in a deposit may be out of equilibrium with respect to its daughter products. The deposit may be so recent that equilibrium has not yet been reached, or it may have been reached in the past and since then the deposit may have been subjected to processes which have caused the uranium and/or the chief gamma-giving products (chiefly radium 226) to be preferentially removed, at least locally.

For such deposits, it is necessary to adjust radiometric values to obtain the best approximation of representative uranium grade. "Equivalent-radiometric" assays and interpretations of borehole log radiometric data are most commonly subject to such adjustment. An equivalent-radiometric assay is defined as an assay which is made to determine uranium content but is based on measurements of the gross count gamma radiation from the daughter products; the resulting estimate of the uranium content must assume that the uranium and its daughter products are in equilibrium.

Normally, during the course of evaluating a deposit, as many samples (representative of the deposit) are taken as considered neccessary and are analyzed for both chemical and radiometric-equivalent grade. Comparisons are made of the resulting values to determine the ratio of the chemical to the radiometric grades. Simple arithmetic averages of uranium:radiometric ratios do not always suffice for adjustment purposes. The ratios are often not straight line functions, and different portions of the same deposit may be characterized by different disequilibrium relationships. Oxidized portions often favor the radiometric values, and, conversely, the quantity of uranium in unoxidized or enriched portions is often not completely reflected by the radiometric values.

Accordingly, it is useful to: classify such sample assay data according their local geologic environments; to fit values from selected classes to several functions using statistical methods such as regression analyses; and, of course, review the "goodness-of-fit" of the derived coefficients. In order to obtain valid results, a complete spectrum of grade values must be represented in each class. Functions which have proved useful are:

```
Y = A + BX + CX**2 + DX**3 + EX**4 (1) ,
LOGe Y = A + B x LOGeX (2) , and
where,
X = observed radiometric value,
Y = predicted chemical value,
A, B, C, D, E are coefficients.
```

3.4.2 Application of Disequilibrium Correction Coefficients

If disequilibrium coefficients have been determined, they may be applied to radiometric data in the UDAT files as explained in Section 7.6.6. All sample data are coded as to whether or not they may be subject to corrections (Figure 5.1). Corrections may be applied when running program URDAT to create intermediate UDAT files, or they may be applied during the processing of the intermediate files by one of the ore reserves programs. The latter method is recommended since once the corrections have been made by URDAT, no further changes should be applied when processing the intermediate files.

UDAT SYSTEM: GENERAL FILE STRUCTURE

<u>4.0 UDAT SYSTEM -- PRINARY (BASIC) FILES, GENERAL STRUCTURE</u>

In URAD, all sample data are stored as linear sample sets, as defined above, regardless of their type and origin, and are contained in standard DOS files herein termed "UDAT" (Uranium, DATa) files.

Sample data are first entered and stored in **UDAT primary ("basic") files** (Section 4.1) which are in the "sequential, formatted" mode and consist of records having a maximum length of 80 characters each. The data may be entered according to one of several formats.

Program URDAT (Section 8.0) processes the primary files and creates UDAT **intermediate** files which are completely standardized and are in the "sequential, binary" mode. The intermediate files are used as input to the ore reserves programs.

There is no limit to the number of UDAT files or the number of sample sets within either a primary or intermediate file except those imposed by the constraints of the microcomputer system itself. UDAT files may reside on hard disk or floppy disk and may be given any DOS-compatible file names.

File size is limited to the available capacity of the disk involved.

This Section, and Sections 5 & 6, describe the attributes of the UDAT primary data files. The intermediate files are described in Section 8.5.

Note: Program URDAT is designed so that additional format types may be added to the URAD system if needed.

4.1 PRIMARY UDAT FILES

All sample data in a primary file is entered according to "fixed-field" formats in accordance to prescribed rules, but unformatted text is also allowed. No records may be greater than 80 columns (characters). Sample sets within a given file may consist of any of the UDAT sample types, i.e. "contiguous", "contiguous bimetal", "non-contiguous", "A-E", or "F"; and different types may be included within the same file.

4.1.1 Test Primary UDAT Files

Four test primary UDAT sample assay files are included with this guide. They may be easily scanned by using available word-processing programs.

4.1.1.1 Test File GAMDAT

Test file "GAMDAT" contains examples of all the formats. A listing of file "GAMDAT" is shown on Figure 4.1a-b. If program URDAT (Section 8.0) is run using test file "UCON1" as the UCON file, the variables listed in the designated print-output from the RUN (Appendix C) may be compared to

UDAT SYSTEM: GENERAL FILE STRUCTURE

those in Figure 4.1a (part 1) and 4.1b (part 2) (see also Sections 3.3.6 and 5.4).

4.1.1.2 Test File STARDAT

Figure 4.2 is a partial listing of test file "STARDAT" which consists of 230 actual sample sets in the "FIU" format. The results of running URDAT on these sets is shown on Appendik C. This file is used to illustrate many of the features of the URAD programs.

4.1.1.3 Test File GAMDATV

Figure 4.3 is a partial listing of test file "GAMDATV" which contains sample sets in the "V" format (both uranium and vanadium assays). File GAMDATV is used in describing program RESUV.

4.1.1.4 Test File STARDATL

File "STARDATL" consists of selected sample sets, from the STARDAT primary UDAT file, to which have been added hypothetical lithologic records (Section 6.4). It is may be used to test the lithologic edit features of the UCON system (Section 7.6.4).

4.2 FORMATTED DATA

4.2.1 Sample Set Record Types

A UDAT file consists simply of data from one or more sample sets, with each set comprised of a **header** record and, optionally, **continuation** records. Every sample point to be recognized in the files must be represented by a header record, but continuation records are not required if the interval represented by the sample point is considered devoid of significant mineral content ("barren"). **Lithologic and directional** data records may, optionally, follow the continuation records (or the header record, if there are no continuation records. The organization of the sample sets listed in Figure 4.1 is described by the comment records ("C" in column 1).

There are limits to the number of continuation records within a sample set; these are defined in the discussion of the individual UDAT formats (Section 6.0).

4.2.1.1 Header Records

The very first record of any sample set consists of an **identification or** "header" record containing the descriptive information and , if required, gamma-log interpretation parameters. The point of origin is referenced by two coordinates and an elevation (see Figure 6.1). Each header record must contain a primary "sample-type" code in column 13; subsidiary sample-type codes may be required in columns 14 and 15. The sample-type codes define

UDAT SYSTEM: GENERAL FILE STRUCTURE

both the type and format of the data within the given sample set. (Some header records may also contain sample data.)

If the sample set is considered "barren", i.e. there are no continuation records, the interval of "barrenness" is assumed to be between the reference elevation and the "total depth sampled" (Section 5.2.7).

4.2.1.2 Continuation Records

One or more continuation records containing sample intervals and corresponding grades may follow. Each sample interval is represented by a thickness and mineral grade value.

For borehole log data, the sample interval thicknesses are all the same, and the value of the interval is entered on the header record. For intervals of barren material between anomalies, only the thicknesses are included; the grade of such intervals is assumed to be negligible.

4.2.1.3 Lithologic Records

One or two records containing "lithologic" (gcologic) information (Section 6.4) may follow either the last continuation record of a sample set or the header record (see *NOTE). Lithologic records all have the same format, regardless of the format of the header and continuation records.

Note: if a given group of samples sets have been characterized with lithologic information, a barren sample set in that group must also contain applicable lithologic data, or else it will be ignored completely in a RUN when lithologic edit control is used.

4.2.1.4 Directional Data Records

One or more records containing information on the direction and attitude of the linear sample set may follow the last lithologic record, the last continuation record or the header record. If the information is not present, the sample set is assumed to be vertical. Directional data records all have the same format, regardless of the sample set type.

This first version of the guide does not include a description on the format and use of directional data.

4.2.2 Format Types

Three basic format types are used:

4.2.2.1 Contiguous Format

The "contiguous" format is best suited when entering chemical or radiometric assays (from mine workings or borehole materials) from a list of contiguous

samples recorded without regard to mineral content. The contiguous format may contain uranium assays only (**unimetal**) or uranium and vanadium assays (**bimetal**).

4.2.2.2 Non-contiguous Format

The "non-contiguous" format is best suited for transcribing sample data from maps or tabulations where low-grade samples have already been censored; it is also useful for entering interpretations of "total" anomalies from strip logs. It does not provide for vanadium assays.

4.2.2.3 Borehole Log Formats

The "borehole log" formats are used for entering data derived from continuous measurements in boreholes. The "FnQ" format is used to enter interpreted values; the "A-E" and "F1U", "F1C" and "F11" formats are used for data which must be additionally interpreted.

4.3 FORMAT-FREE TEXT

In addition to the specific sample set data, general text information concerning the file or any sample set may be freely interspersed within a primary UDAT file, as shown in Figure 4.1. The character "C" in the first column of any record in a primary UDAT file automatically denotes the remainder of the record as being text information.

The "C" must be entered in column 1 of any record which is not in a standard sample set format. If it is not, serious problems will result during processing of the data.

No text information is carried over to the intermediate UDAT files.

C C	BORE	EHOL	ΕL	.05	FC	RH	AT.	,	a3	ľ	(NEE	EDS	5 (FIL	.Ε	RN	161	81).	I	NC	HE	S	DEI	FLI	50-	II	JN.			
С	CCCT			H	eac	ier 78	R	900	rd			211				100										28					วบล	RDA'
0021 0031 0041 0051 0051 0051 0051 0051 0051 005		IEST IEST IEST IEST IEST IEST IEST IEST	5666666656		15 05 03 10 13 67 23 01 83 84	51 61 81 91 61	-1 1 1 1 1 1 1 1 1 1	00 0E 10 11 07 12 04 02 10 67	n 51 41 71 71 31 71	Re 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		rd: 301 991 531 551 551 551 551 551 551 551 551 55			1) 008 02: 601 26(0357 011 124 701	31 11 11 11 11 11 11 11	11112121	01 01 56 37 03 60	21 81 41 51 21	1 1 1 1 2 1	0.053030	2352 252 80 47 07	1 1 1 1 1	1 1 1 1 2 1	03: 02: 43: 35: 07: 25: 00:	51 21 41 61 71 71	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \end{array} $	0001777601	501 191 751 511 561 561	1 1 1 1 1 1 1		RDA RDA RDA RDA RDA RDA RDA RDA RDA
С	BORE BBBT			He		iRMi ier 79:	Ra	200	rd			INC 203				FL 100					1 0) T	77	Q.	413	28		71	00	аY	71! P	RDA'
C 0011 0021 0031 0041 0051 0051 0061 0061	BBBT BBBT BBBT BBBT BBBT BBBT	EST EST EST EST EST	7 7 7 7 7 7 7	Cc	15 30 15 00 00 1 00	11 91 13 15 53 53 33	uat 3999-9	40 18 13 00 00	n 02 03 53 73 33	Rei 7 3 9 9 9	2: 01 01 02 01 01 01	002 203 843 063 213) 220 380 376 376 307 307	33333	33999	14 80 04 00	03 03 43 83 93	33999	1: 1: 0: 0: 0:	20 78 16 10	33333	39999	350 238 010 008	03 93 93 93 93	399999	37 18 00 00	103 173 173 173 163	39999	UR UR UR UR UR	20A 20A 20A 20A 20A 20A 20A 20A
1028 C	888T 888T			j	M1 M1	91;	50)JH)JH	13 20	10	00.	1H1 1H2	4	15	50J	112	21	70	Û					11	712	200)]}	118	112	50	UR	ida:
С С				He	ead	EN	R٤	Ю	rđ															-				-				
C 1011	BBBT BBBT	EST	9L	Ĺi	th M1	77) al 2	1001 50	C)JN	Re 13	co: 1(rd: 00,	IHI	(2) 4	15	50J	.00 M1	51	00	0J		-							3 118			4UR Ur	
C	BBBT					91																										
0	BORE			He	ad	er	Re	203	rđ					UF																		
C 001H 002H 003E 004E 005H 006E 007E C	BBBT BBBT BBBT BBBT BBBT BBBT	EST EST EST EST EST	10 10 10 10 10	Ĉ	15 15	1.	29 37 05 03 	10	n 01 01 01 01 01 01	Re(04 08 30 03 00	. 91		i ()00)16)49)05			00 03 02 08 00 05 02	22169	5 0	000000	35 35 35 06 09 08	[7]		57 00(17) 00(00(00() 4 2 1)	712	04 29 00 00	11	3	0 1 0 0 0	35 06 07 05 03 08	UR UR UR UR UR UR UR UR	IDA IDA IDA IDA IDA
1018	888T	EST	IOL	J	MI	2	50	JH	13	1(00.	INI	4	15	50J	71	51	00	0J	11	520)0()								UR	DA
C C E	BORE	HOLE	E LI	06	FQ	RHA	٩Ţ,	;	F21	l ',	, E	EST	•	UR	RAN	IU	M	VA	LU	ES;	6	:0f	R	22	IEI) F	08	D	IS	EQI	.B.	
ູ້ຍ	888T	ESTI	11F:	26		er 778	30		91	98				7 1		00	51	85	00	532	29()33	57	94	412	28		3		X	IUR	DA
C 001E	3BBT ARRT	ESTI ESTI	1			1 NU 83 87			12			0	22 22			120				11 01			50()0(88 02			10	00	UR UR	DA DA

		FIGUE	<u>RE 4.18</u>		
TCCT	F 1 1 F	110 440 470	CHOLUNO	NUE LOUG	E 0.0 M

AAA AAA 1AAA 2AAA 2AAA 4AAA 5AAA 5AAA	142510 143510 143 143 143 143 143 143	1200 4045- 000430 000123 000141	400 000047 000673 000108	000054 000890 000179	0 000114 001040 000405	459 5 00018 00127 00048	195097 2795667 7 000346 1 001366 3 000432 0 000116	000688 000312 000058	000404 000395 000221 000017	STARMSA Starmsa
404 1444 2444 3444 4444 5444 5444 6444	144F1U 144 144 144 144 144 144	3835- 000277 000327 000027 000027 000188 000260	000049 000251 000189 1505 - 000295	000232 000125 000052 000439	000407 000193 000094 000062 000832	2 00104 2 00016 2 00011 2 00006 2 00085	565667 4 001089 7 000254 8 000095 7 000068 5 000711 4 000066	000507 000295 000041 000076 000494	000318 000344 000036 000100 000374	STARMSA Starmsa Starmsa Starmsa Starmsa
7888 888 1888 2888 2888 2888 2888 4888 5888 5888 5	144 145F1U 145 145 145 145 145 145	3790- 000063 000040 000252 000119 000285	000045 000072 000059 000257 000152	000101 000063 000141 000107	000044 000120 000055 000108 000083	00010 00007 00006 00006 00007	675667 1 000189 8 000066 9 000076 9 000058 4 000140 9 000075	000180 000057 000153 000051 000383	000070 000044 000226 000055 000428	STARHSA Starhsa Starhsa Starhsa Starhsa
- 7888 888 1888 1888 2888 3888 888 888 888	145 146F1U 147F1U 147 147 147 147 148F1U 149F1U		1200 -000015 00018B 000017 1400 1600	000022 000253 2146 2144	0 000036 000289 0 0	440 5 00005 00022 507 5 440 5	195097 665667 1 000050 1 000052 195097 585667	000050 000035 0106 0112	000030	
ААА 1ААА 2ААА Зааа ААА ААА ААА	150F1U 150 150 150 151F1U 152F1U 153F1U	1200 3470- 000763 001102 1200 1200	1800 000041 000725 000522 2000 2200	2145 000046 000871 000169 2150 2151	0 000059 001304 000100 0	400 5 00008 00235 00006 507 5 507 5	585667 2 000158 6 002541 8 000039 195097 195097 346517 2 000112	0112 000351 002381 000012 0106 0106	.9 000625 001633 000009 6	STARMSA Starmsa Starmsa Starmsa Starmsa Starmsa
1888 2888 3888 4888 5888 5888 5888 5888 5888 5	15333 15533 15533 1553 1553 1553 1553 1	000054 000149 000467 000112 000064 275 -	000061 000146 000278 000159 000117	000059 000145 000138 000143 000265 000047	000067 000149 000042 000086 000179 000091	00009 00013 00002 00006 00012 00022	2 000112 2 000151 2 000142 3 000019 3 000046 2 000076 9 000330	000179 000266 115 - 65 - 000042	000161 000440 000077 000051 000025	STARMSA Starmsa Starmsa Starmsa Starmsa
84A 144A 24AA 34AA 44AA 54AA 54AA	154F1U 154 154 154 154 154 154	1400 3625- 000046 000141 000346 000034 000168	400 000040 000047 000209 000244 65 - 000056	2138 000054 000040 000276 000189 000059 000058	0 000076 000046 000339 000166 000066	455 5 00008 00006 00037 00016 00009 00009	7 000084 2 000059 7 000403 5 000141 3 000156 5 000079	000049 000074 000380 000085 000250 000082	000104 000365 000051 000266 000111	STARMSA STARMSA STARMSA STARMSA STARMSA STARMSA STARMSA
7444 8444 7444 10444 11444 12444	154 154 154 154 154 154	000231 000137 000092 000228 000051	000242 000125 000090 000330 000058	000208 000111 000127 000288 000067	000186 000104 000231 000244 000106	00017 000110 00028 00018 00018	7 000142 0 000120 7 000278 0 000080 3 000565 0 000064	000131 000113 000238 000059 000694	000139 000109 000199 245 -	STARMSA STARMSA STARMSA STARMSA

FIGURE 4.2

PARTIAL LISTING OF TEST FILE "STARDAT"

OVVVTESTI3VI 5200 5200 70107 737046 0325 20 45 05 30 111 07VD 1VVVTESTI3 50 00 42 155 10 20 170 15 20 22 40 305 31 35 100 16VD 2VVVTESTI3 30 400 44 40 54 06 20 32 02 40 01 20 01105 50 06VD 3VVVTESTI3 20 110 08 20 200 34 30 110 06 20 64 05100 20 01 04 20 02VD 0VVVTESTI3 20 110 08 20 200 34 30 110 06 20 64 05100 20 01 04 20 02VD 0VVVTEST14V1 5300 5200 70136 725050 0357 50 65 04 20 <td< th=""><th>DATA DATA DATA DATA DATA DATA DATA DATA</th></td<>	DATA DATA DATA DATA DATA DATA DATA DATA
1VWVTEST14 50 205 24 20 345 30 5 460115 20 200 21 30 35 01105 20 02VD 2VWVTEST14 20 90 08 40 175 30 20 202 22 20 100 05100 20 12 500 25VD 3VWVTEST14 50 180 12120 50 02 VD VD<	DATA DATA DATA DATA DATA DATA DATA DATA

FIGURE 4 3

LISTING OF TEST FILE "GAMDATV"

•

5.0 UDAT SYSTEN --- PRINARY FILES. DESCRIPTION OF DATA IN SAMPLE SETS

Refer to Section 6.0 and Figure 6.1 for the formats and specific field locations of all sample set data discussed in this Section.

5.1 DESCRIPTIVE DATA COMMON TO RECORDS IN EVERY SAMPLE SET

The following descriptive data elements are common (in type and format) to all sample sets and are entered in every record; they are listed in the order of their relative importance, not in the order in which they appear on the records.

5.1.1 Hole Number / Sample Set Identification

A sample identification number (/code/symbol) used to describe a sample set is hereafter termed the "hole number" because most of the samples available during the time that the URAD program were originally developed were from borehole data. The hole number is that data element which must uniquely identify any sample set. Duplicate hole numbers should not be assigned to different sample sets within a data file, and if possible, should be avoided throughout the entire UDAT file system.

The hole number is located in C(7-12) (columns 7 through 12) of every sample set data record, including the header, continuation, geologic, or directional records. It may consist of any combination of alphanumeric characters. However, these characters (including blanks) must be entered in exactly the same columns in each record within a sample set. For example, if the hole number is entered as "A D 12" in a header record, it cannot be entered as "AD12 ", "A D 12", "A-D12 ", etc. in another record of the same sample set. It must be entered exactly as "A D 12"; otherwise the URDAT program will abort, since the hole number is the only key for identifying records belong ing to the same sample set.

A hole number should not be left as all blanks; at least I character should be assigned.

The hole number is probably the single most important sample set identifier and is used throughout the URAD system for identification and edit purposes. When data are received with sample identifications that are greater than 6 characters, such identification must be reduced to 6 characters.

Considerable forethought is required in setting up a sample identification system for assay data which will be processed by computer method. The entire renumbering and cataloguing of the sample identification of, say, 2000 samples may not seem warranted but in the long run it is well worthwhile. The use of sample identification codes consisting of greater than 6 characters has been tried and found to be extremely cumbersome, especially when creating maps using a plotter. The number of possible combinations of six alphabetic letters and/or numbers are sufficient even for a fairly large number of sample sets.

5.1.2 Area Number

The area number is a secondary identifier which is used to classify sample sets into logical groupings such as land survey boundaries, ore blocks, anticipated mining phases or any other unit for which separate analyses may be foreseen. The assignment of area numbers to sample sets is optional, but recommended if the data in a given file consist of over, say, 100 sample sets.

The area number is entered in C(4-6) of each record and consists of any combination of 3 alphanumeric characters, including blanks. The same rules of identity apply to the area numbers as do to the hole numbers, i.e. a given area number must always be entered in exactly the same form. However, the same area number may be assigned to as many sample sets as desired.

The area numbers are used both as identifiers for "cataloguing" purposes and as edit control parameters (Section 7.6.9).

5.1.3 Property Code

The "property code" is an additional 7-character code provided for sampleidentification. It may consist of any combination of alphanumeric characters and is entered in C(73-79) of each record. It is primarily used for identification of the area, property, mine, or other such broad grouping by which the sample sets may be conveniently categorized but is not used in any program operations such as editing. The same property code may be assigned to as many sample sets as desired.

5.1.4 Record Count or Index

Columns 1 through 3 are reserved for indexing (or "counting") the number of records within one given sample set. The record index numbers are primarily for convenience in visual inspection of the records and they ignored in the URAD programs. However, they are necessary if it is ever desired to sort the sample data.

Theoretically, in a computer sort procedure, the primary key would be the property code, the secondary key -- the area number, the 3rd key -- the hole number, and the last key -- the record index.

In each header record, the record index field is left blank, or a "O" (zero) may be entered. The first continuation record contains a "1" in C3, the second continuation record contains a "2" in C3, and so forth. It is recommended that the index for lithologic data records within a sample set begin with "101" and those for directional records with "201".

5.1.5 Example Drill Hole Location Plot

Figure 5.5 is an example dril! hole location map made from data in test file "STARDAT". It shows the position and hole number of each sample set for the hypothetical property "STARMSA" based on the sample set header records in file "STARDAT". Also shown is the outline of the areas indicated by the area numbers "AAA", "BBB", and "CCC" that are on the header records.

5.2 DESCRIPTIVE DATA COMMON TO ALL HEADER RECORDS

The following data elements are common (in type and format) to all sample sets (with minor exceptions as noted), and are entered in every header record. These are discussed in the order of their appearance in the record.

5.2.1 Sample-Type Codes

C(13-15) of each header record contain "sample-type" codes which identify the type and format of the given sample set. Figure 5.1 provides a complete summary of all sample-type codes used in the UDAT system. C(14-15) may sometimes be blank, but C(13) must always contain a code.

Note that the codes determine whether or not estimated uranium values will be subject to correction for radiometric disequilibrium.

Codes "A" through "F" in Cl3 indicate borehole log data, while numeric codes indicate other types of sample data. "V" is used for the sample data which contain vanadium as well as uranium assays. "L" denotes lithologic data.

Cl4 is an accessory code which is applied in several ways. With the bimetal ("V") format, it flags whether or not the uranium values are subject to disequilibrium correction; With the non-contiguous format, it is always "]".

C15, with borehole log data, denotes the type of readings in the data:

"l" for inches of deflection from baseline in rectilinear logs. "Z" for inches of deflection from baseline in curvilinear logs.

"U" for uncorrected (for dead time) counts per second.

"C" for corrected (for dead time) counts per second.

"Q" for interpreted borehole log data.

Note: A description of the "Z" format and interpretation of curvilinear logs is not included in this first version of the URAD user's guide.

C15 is also used in the non-contiguous format to specify whether samples are referenced by depth or elevation.

Columns 13, 14, and 15 are designated as sample-type codes 1, 2, and 3 respectively.

The term "A-E,!" (or simply "A-E") is an abbreviation for: "A, B, C, D, or E" in Cl3, "1-9" in Cl4, and "I" in column 15. The "A-E" and "Fl1" codes refer to borehole log readings in inches of deflection and are further described in the following two sections.

5.2.1.1 Scales and Ranges

When a radiometric strip log is generated, the "sensitivity" of the recording instrumentation must be limited to the extent that the stylus does not exceed the limits of the strip-chart paper. Conversely, the sensitivity must be sufficient that any "anomalous" radioactivity is well defined. Therefore, strip logs are generated, various recording scales are used to specify the number of counts-per-second (cps) that are represented by a given length of deflection from the baseline of the strip chart.

Note: If the logging probe is of the geiger type, the unit of radioactivity may be milliroentgens per hour (mr/hr) instead of cps. When the term "cps" is used herein, it is understood that it may be substituted by "mr/hr".

Each scale is usually defined by a range, which is simply a number code used as a "short-cut" method of noting, on the strip chart, the scale that is in effect for any segment of the radiometric amplitude curve.

The ranges and associated scales employed by various logging units vary considerably. The scale denoted by a range may be in terms of cps-per-inch or cps of total, or "full-scale", deflection (commonly 10 inches) on the chart paper. Examples of gamma-ray logging factors, scales and ranges for selected logging units are shown on Figures 5.2a, b, c, & d.

Note: There is always the possibility that the true "full-scale" deflection for a given logging unit may not be the same as the total inches of deflection indicated by the chart paper used on the recorder. It is wise to thouroughly check out the specifications of the logging unit.

Radiometric data "digitized" (Section 3.3.4) from strip logs in terms of inches-of-deflection must also include information on the associated scales. This is done by entering a numeric "range code" along with each inches-of-deflection reading in the CE-fields (Section 6.3.2) of the continuation records. The range code refers to a "range/scale" table which provides the values for cps- (or mr/hr-) per-inch, or at full scale, represented by the range codes for the given log type.

When readings are in inches-deflection, the sample-type code in C13 determines the range/scale system (Section 5.2.1.2) which applies to the range codes associated with the readings in the given sample set. If the code refers to a "full-scale" system, the reference full-scale-deflection (in inches), must also be entered as a data element (Section 5.3.6).

During computer processing, the sample-type codes in C(13-14) and the range codes in the C-E fields are used, in combination, to find the the appropriate cps-mr/hr--per-inch scale value --which is then multiplied by the inches-of-deflection to give total counts-per-second represented by the reading. The scale is found by searching a table of values previously established for the given range/scale system.

5.2.1.2 Range/Scale Code Systems

URAD contains two range/scale numeric coding systems. A given sample set must be in one system or the other, but both types may be included in any file. For either system, the code "1" must be entered in column 15 (sample-type code 3) of the applicable header record to denote that the readings are in inches-of-deflection.

The "I" code and associated range numbering systems apply only to borehole log data entered as inch-deflection readings from strip logs!

UDAT SYSTEM: FILES DESCRIPTION

1. The "A-E,!" System utilizes the cps-per-inch range/scale method and a set of ranges and associated scales is established for a particular logging unit (or probe) type. The given type is defined by sample-type codes 1 and 2 in columns 13 and 14, respectively, of the header record; in this case the two codes actually represent one 2-character code and will be so referenced in the remainder of this section. The 2-character code may consist of any combination of "A", "B", "C", "D", or "E" in column 13 and the numbers 1 through 9 in column 14. Some examples are: "Al", "B9", "E3", and so forth.

A DOS file designated as "RNGTBL" must be established to contain the scale values represented by the numeric range codes for each and every "A - E" 2- character code which is entered in header records in any of the sample assay data files. Each record in file "RNGTBL" contains the appropriate 2- character sample-type code, followed by a list of scales, each of which denotes cps/inch for a specific range code associated with the given log type.

A test RNGTBL file is included with this guide; it contains the range/scale data tabulated in figure 5.2 for sample-types "All", "A31", etc. The scale for All and A31 are necessary for processing the "A~E, I"-format sample set data included in test file "GAMDAT". The other types are used to demonstrate the flexibility in entering the scale values.

Figure 5.3 is a structured illustration of the data contained in the RNGTBL file.

The range code to which each scale applies is implicitly determined by the positon of a particular scale value on the list. Using Figures 5.3 as an example, the first record contains "Al" in columns 1 and 2. This is followed by a list of scale values (each separated by a comma). The first value -- 20 cps/inch -- represents range code 1, the second value, -- 40 cps/inch -- represents range code 2 and so forth. The range codes and associated scales for each sample-type code are shown in Figure 5.2a.

The requirements for a record in file "RNGTBL" are that: the sample-typecode must be in column 1 and 2; each scale value must be immediately followed by a comma; no "imbedded" blanks may be present; and, the maximum allowable number of digits is 7 (including the decimal point), but a decimal is not required if not applicable. No other record types are permitted in "RNGTBL".

The advantage of the "A-E,1" system is that it provides a means for establishing a specific set of range/scale values for a given log type. The disadvantage is that an entry must be made in file RNGTBL for each new log type (i.e. one with a different range/scale system) for which data are entered in the "A-E" format. If a sample set in the "A-E" format is processed by program URDAT and either 1) no RNGTBL is available in the default drive, or (2 RNGTBL contains no list identified by the given 2-character code in the sample set header record, the program will automatically terminate.

When the "A-E,1" system is used, the no data entry is required for "Fullscale deflection" in the header record.

2. The "F11" System uses a "standardized" numeric range code table with the scale values (Figure 5.4) contained within the URDAT program. It is activated by sample type codes "F" (C13), "1" (C14), and "1" (C15) in the sample set header record.

Scale values are in counts-per-second per total inches of the deflection (full-scale) on the strip log chart and relate to the "full-scale" inches entry (Section 5.6.3) on the header record. The inches deflection and range numbers are entered in the CE-fields exactly as for the "A-E" format, but cps values are calculated by dividing the scale value (represented by the applicable range code) by the value of the "full scale deflection", and then multiplying the results by the inches deflection of the given reading.

As an example, if an inch-deflection reading under the "Fll" format has an associated range code of "33" (Figure 5.4) and the "full-scale inches" on the header record is 10.0, then the cps-per-inch will be determined as 1000.0 (10000/10); if the "full-scale inches is 5.0, the cps-per-inch will be 2000.0 (10000/5).

The advantage of the "FII" system is that it covers most of the strip log recording scales currently in use, and new, 2-character sample codes and associated range/scale values need not be established for each new log type. However, if a set of scales not included in Figure 5.4 is encountered, then the "A-E" format may be used. The main disadvantage of the "FII" system is that the logging-unit type is not explicitly defined by the sample-type code. For this reason, space is provided on the header (Section 5.3.7) for a log-type "identifier"; the coding system for this must be established by the user.

NOTE: when preparing to enter inch-deflection readings for a sample set into the data files, whether "manually" or by automatic digitizing methods, the range/scale notation used for the given borehole log must be carefully reviewed and understood. Confusing "full-scale" with "cps-per-inch" ranges and scales will lead to large-scale errors in converting the readings to counts per second. The choice of which URDAT range/scale coding system to use should be be made well in advance of the actual data entry.

5.2.2 Coordinates

Two numeric coordinates of up to 7 digits each should be entered, to the nearest foot (MV = 99999999 ft), in each header record. These entries are not mandatory and their absence will not cause URAD programs to abort. However, they are needed for certain types of edits in the URAD system and, eventually, for plotting purposes as well as for certain geostatistical programs.

As with the hole numbers, considerable forethought should be given to planning the coordinate systems to be used for data which will be computer-processed. Coordinates should be related to an origin which not only references data within a given file, but all data which may be eventually evaluated "in toto" at some future date. The reestablishment of a new coordinate system for data originally referenced by several "local" coordinate systems is well worth the effort.

Coordinates must lie within the first quadrant of the Cartesian coordinate system; they cannot be negative.

5.2.2.1 North Coordinate

The north coordinate is the northerly component (y-axis) of distance from the reference origin and is entered in C(16-22).

5.2.2.2 East Coordinate The east coordinate, C(23-29) is the easterly component (x-axis) of distance from the reference origin.

5.2.3 Collar (or Reference) Elevation

The collar elevation is the vertical (z-axis) point of reference for a sample set. It is a positive or negative numeric value, entered in C(30-35) to the nearest tenth of a foot, and may consist of up to 6 digits (MV = 99999.9 ft), with a decimal point always assumed between C34 and C35. It represents the origin point of the sample set. For borehole data, this elevation represents the "collar" (or surface) elevation of the borehole. If there is an interval of assumed barren material between the collar elevation and the top of the first sample of the set, then the thickness of the barren interval is denoted by the entry -- "depth to first sample" (Section 5.2.6).

An entry for collar elevation is not mandatory but is highly recommended since certain edit procedures are based on the elevations, and it may be required for certain geostatistical and plotting programs. Sea level is the best reference datum for collar elevation. If any other datum is used, it should be applied to all sample sets which may be evaluated "in toto" at some future date.

Negative values for collar elevation are allowed.

5.2.4 Depth to Pit Bottom

This entry is used to provide information on existing open pit mine workings and is useful both for plotting and for editing sample data with respect to the current position of an open pit (see also Sections 9.1.12 and 14.1). It represents the depth (from the collar) to the intersection of the given sample set with the bottom of pit workings, and may be used to estimate how much of the material represented by the sample set has been removed.

Pit-bottom depths are normally entered into a data set at some point after pit excavation has actually taken place and a certain amount of mining has taken place. Comparisons may then be made between the amount of ore actually mined and reserve calculations based on original samples currently positioned within the pit and above the pit bottom. Reserves may also be calculated for unmined potions of the pit.

The pit-bottom depth is entered to the nearest 10th of a foot in C(36-39)and may consist of up to 4 digits (MV = 999.9 ft); the decimal is assumed between C(38) and C(39). It should not be entered unless a pit actually exists. If a sample set begins at the bottom of a pit, then the pit-bottom depth should be entered as zero. If the pit-bottom depth entry is blank, it is assumed that no open pit exists at the given sample set location.

5.2.5 Depth to Oxidized/Non-oxidized Contact

This entry is used to mark the approximate position of a change (if known) from an oxidized to non-oxidized environment within the total interval represented by a sample set. It is sometimes approximated by the top of the water table (which can often be identified by electric logs). In certain uranium deposits it is distinguished by color change, caused, for example, by the transition of hydrous iron oxides to iron sulphides.

A value entered for the "oxidixed/non-oxidized" contact will allow the application of separate equations for disequilibrium correction (Section 3.4) to radiometric grades determined for any samples in the given sample set.

The depth from the top of the sample set (represented by the collar elevation) to the approximate oxidized/non-oxidized contact is entered to the nearest foot in C(40-42) and may consist of up to 3 digits (MV = 999 ft). If there are no data available on such a contact, then the field is left blank. If the entire interval of the zone represented by the sample set is presumed to be in an unoxidized environment, a zero is entered. If the entire interval represented by the sample set is presumed to be in an oxidized environment, then the bottom of the sampled interval is entered.

5.2.6 Depth to First Sample

The distance between the point referenced by the collar and the top of the first sample interval of a sample set (or to the first radiometric reading that represents a sample interval) is entered to the nearest tenth of a foot. It may consist of up to 5 digits, with a decimal point assumed 1 place to the left of the rightmost digit (MV = 9999.9 ft). For the contiguous formats, the value is entered in C(43-47), with the decimal point is assumed between C46 and C47. For the borehole log formats, it is entered in the first continuation record (Section 6.3.2.4). For the non-contiguous format, it is not used because the first sample interval defines the value (Section 6.2).

5.2.7 Total Depth Sampled

The distance from the point represented by the collar to the bottom (or end) of the sampled interval is entered in C(43-47) to the nearest tenth of a foot, with the decimal point assumed between C46 and C47. Up to 5 digits are allowed (MV = 9999.9 ft). For borehole log data, this distance represents the bottom depth logged (not necessarily the bottom of the hole). For other data it represents the distance to the bottom of the last interval of the sample set.

Note: The contiguous sample formats do not provide any entry for total depth sampled, and it is calculated in the URDAT program. If an interval of barren material is known to exist below the last sampled interval, it should be entered as a "pseudo-sample".

5.3 ADDITIONAL ENTRIES COMMON TO BOREHOLE LOG HEADER RECORDS

All borehole log data ("A-E" and "F") must include, in the header records, the following additional data which is used for interpretation. Although the "FnQ" format does not require some of these data for successful processing, they should be entered for reference purposes.

5.3.1 Readout Interval

This is the interval at which readings are recorded during the logging process or at which representative readings are measured from strip logs. It is generally 0.5 or 1.0 feet and is entered in C(48-49) to the nearest tenth of a foot, as a 2-digit number with the decimal assumed between C48 and C49.

5.3.2 Depth to Hole Water

This is the distance from the collar to the level of any water and/or drill ing fluid which may be standing in the hole when it was logged. If the field is left blank, it is assumed that all recorded intervals were logged in water. The "depth to hole water" is entered in C(50-52) to the nearest foot; up to three digits are allowed (MV = 999 ft). This value is used in conjunction with the "attenuation" factors (Section 4.3.4).

5.3.3 K-Factor

The k-factor is the basic constant of proportionality which is used to convert the radiometric data to representative estimated uranium values (See Section 17). It is usually derived by logging a simulated drill hole (or "test" hole) which contains a measured interval of known uranium grade. The normal "standard" is usually a dry (no fluid) four and one half inch diameter hole, with the uranium assumed to be at radiometric equilibrium as possible. (However, the "standard" could instead be a hole completely filled with liquid).

The k-factor is applied directly to radiometric cps measured in holes having the same characteristics as the test hole. For borehole environments differing from the standard, "attenuation" factors are used; see Section 5.3.4.

The logging speed and time constant at which the k-factor has been computed must also be known so that any changes in logging speed during logging procedures may be entered into the data (Sections 6.3.2.4 and 17).

Up to 3 significant digits of the k-factor are entered in C(53-55), followed by an exponent, in C56, which is assumed to be negative. To determine the proper entry and exponent, simply count the number of places that the decimal must be moved so that it will be immediately to the right of the last significant digit allowed.

Example: if the k-factor is 0.0000312, the decimal must be moved 7 places to the right -- 0000312; the k-factor entry is 312 and the exponent is entered as 7. If the k-factor is 0.0001462, the decimal must be moved to the right 6

places -- 000146.2; the k-factor entry is 146 (3 significant digits) and the exponent entered is 6.

For situations where more than three significant digits of the k-factor are desired, see Section 6.3.2.4.

5.3.4 Attenuation Factors

When logging boreholes in the field, conditions which may often vary from those existing in the "test hole" (Section 5.3.3) are: existance (or lack) of fluid in the hole; different hole diameter; and, the presence of hole casing. These differences are taken into account by applying, to the k-factor, multiplicative (see below) attentuation factors based on theoretical considerations or additional calibrations in "test holes" having conditions which vary from the "standard" test hole. Since it is not feasible to construct a series of test holes to cover every possible deviation from the "standard", correction curves are generally developed. Example hole attenuation data are shown in Figure 5.2. Two attenuation factors are provided in UDAT formats; one is for correcting the k-factor for readings in air-filled portions (dry environment) of a drill hole and the other for fluid- (water"-) filled portions or "wet" environments; each factor is used independently of the other. The depth to hole water (Section 5.3.2) is entered so that the distinction can be made between the two environments. Applicable casing, hole-diameter, and other attenuation factors must be included in the air and the water correction factors before they are entered in the header records.

For example, if the air and water correction factor are 1.00 and 1.10, respectively, at a given hole diameter and the casing factor is 1.2 for 1/8-inch casing, then for a 1/8-inch cased hole, the air and water correction factors must be entered as 1.20 and 1.32, respectively.

Correction for additional factors which directly affect the k-factor are discussed in Section 6.3.2.4.

5.3.4.1 Air Correction Factor

The "air correction factor" applies to changes in the "dry" environment and is entered in C(57-59), to the nearest hundredth of a unit, with the decimal point assumed between C57 and C58; up to three digits are allowed (MV = 9.99).

An air correction factor is not needed when the entire interval represented by a sample set was logged in fluid.

If the k-factor was determined for a "dry" environment and the conditions of the logged hole match those in the test hole, then the air correction factor should be entered as "1.00" (decimal point omitted). If no air correction factor is entered in the header record, it is assumed to be 1.00.

An air correction factor other than 1.00 is needed when:

1. The k-factor was originally determined for a "dry" environment, but the casing conditions and/or hole-diameter of the logged hole are different from the test hole.

UDAT SYSTEM: FILES DESCRIPTION

2. The k-factor was originally determined for a "wet" environment.

5.3.4.2 Water Correction Factor The water correction factor applies to changes in the "wet" environment and is entered in C(60-62), to the nearest hundredth of a unit, with the decimal point assumed between C60 and C61; up to three digits are allowed (MV = 9.99).

A water correction factor is not needed when the entire interval represented by a sample set was logged in air.

If the k-factor was determined for a "wet" environment and the conditions of the logged hole match those in the test hole, then the water correction factor should be entered as "1.00" (decimal point omitted). If no water correction factor is entered in the header record, it is assumed to be 1.00.

A water correction factor other than 1.00 is needed when:

1. The k-factor was originally determined for a "wet" environment, but the casing conditions, fluid conditions and/or hole-diameter of the logged hole are different from the test hole.

2. The k-factor was originally determined for a "dry" environment.

5.3.5 Dead Time Factor

The dead time reflects attenuation in the "counting" capability of the electronic equipment used to log the hole according to the equation:

CPSt = CPSo / (1 - (CPSo x (DT/1000000))) where,

CPSt = "true" counts per second, CPSo = observed counts per second, DT = equipment dead time in microseconds (ms).

The dead time is entered in microseconds in C(63-66). It is the only data element in the header record which may contain an explicit decimal point. The decimal point may be in any position of the field; if the decimal is not entered, it is assumed to be to the right of C66. The dead time value therefore may range from 0.001 to 9999 ms; there may be up to four significant digits if the decimal is not entered, and three significant digits if it is entered.

5.3.6 Full-Scale Deflection

In URDAT, the range codes used for the "FII" format (Section 5.2.1.2) are based on the full-scale deflection of the stylus (on a strip log) at the

UDAT SYSTEM: FILES DESCRIPTION

given range, where the "full scale" is the number of cps represented at the total scaled width of the chart paper used for the log (or as otherwise specified for the given logging unit; see note, Section 5.2.1.1). For example, if a scale of "1000" is specified for a full scale at 10 inches, each inch of deflection represents 100 cps; if the same scale is indicated for a 5-inch full scale, then it represents 200 cps per inch. This is in contrast to the method used for the "A-E" format where the range code applies to a scale which is already established as cps per inch.

Therefore, whenever the "Fill" is used, the number of inches represented as as applying to "full scale" must be entered in C(67-70) of the header record, with the decimal assumed between C68 and C69.

5.3.7 Logging Unit (Log Type) Code

It has been generally found prudent to maintain a record of the characteristics of the logging units used in obtaining borehole data. C(71-72) of the header record (for the "borehole log" format) is reserved for any 2-character code which the user may establish to identify the particular unit which was used to obtain the data represented in the given sample set.

5.4 SAMPLE DATA

The UDAT system provides formats for entering any of the sample data described in Section 3. The formats for the various types of sample data differ according to the type of data involved and are discussed separately and in detail in the following section.

File "GAMDAT" is a test primary UDAT file containing examples of the various sample assay data formats. In this file, sample sets "TEST 1", "TESTAI", "TEST 2", "TESTB2", "TEST 9", and "TESTI1" are hypothetical data sets. ("TEST 8" was removed since it simply duplicated another set.)

Sets "TEST 3" and "TEST 4" are digital cps readings from an actual log. To show the relationships of the various borehole log formats, "TEST 5" and "TEST 7" were prepared to simulate (as closely as possible) "TEST 3" cps readings as though they had been digitized from a strip-chart as inch-deflection readings. "TEST 5" is based on the RNGTBL range-code system, and "TEST 7" on the internal "FIL" range-code system. Similarly, "TEST 6" simulates "TEST 4" (RNGTBL system).

In preparing "TEST10", the U308 interpreted values from "TEST 3" were used.

All lithologic data are hypothetical,

When file GAMDAT is processed by URDAT, without any editing (using UCON file "UCON1, for example), the results are as shown in APPENDIX C. The discrepancies in the high grade portions of "TEST 4" and "TEST 6" are discussed in Section 3.3.6.

Files "STARDAT", "GAMDATV", and "STARDATL" are other test files (Section 4.1) which illustrate various types of sample data.

38

	TYPE OF FORMATS AND DATA	SAMPL	E-TYPE	CODES
		Type1 (C13)	Type2 (C14)	Type3 (<u>C15)</u>
	Contiguous Format			
:	Unimetal (uranium only) Radiometric-equivalent assays Chemical (or equivalent) assays	1 2	Btt B	8 8
	Interpretations of borenole anomalies (uncorrected for disequilibrium)	3	B	B
1	Interpretations of borenole anomalies (corrected for disequilibrium)	4	B	B
t	Any designation desired by user; must be already corrected for disequilbrium -	5	В	В
:	Bimetal (uranium and vanadium) Uranium is radiometric-equivalent Uranium is chemical (or equivalent)	¥ ¥	1 2	B B
	Non-contiguous Format			***
t	Radiometric-equivalent assays	6 7	1 1	1 or 2 1 or 2
	(uncorrected for disequilibrium)	8	1	1 or 2
I	Interpretations of borehole anomalies (corrected for disequilibrium)	9	1	1 or 2
	Borehole Log Format			
	Digitized (inch-deflection) readings, range codes apply to file RNGTBL coding: Rectilinear logs	A-E	1-9	I
	Curvilinear logs	A-E	1-7	2
	codes apply to standard (Figure x) codes Rectilinear logs only	F	1	I
	CPS readings, uncorrected for dead time CPS readings, corrected for dead time	F F	1	U C
1	Readings are actual estimated uranium grades Uncorrected for disequilibrium Corrected for disequilibrium	s: F F	12	9 9
	# Uranium values may not be corrected ## "B" indicated field is left blank. ### For non-contiguous format: "1" denoi "7" denoi "7" denoi	tes deo	tas:	

2 denotes elevations.

EIGURE 5.1 SUMMARY OF DATA REPRESENTED BY UDAT SAMPLE-TYPE CODES (IN COLUMNS 13-15 OF SAMPLE-SET HEADER RECORDS)

SAMMA LOS TYPE CODE		i & PRC	OF UNIT DBE TYPE EL NO.)			RECRD Type	TYPE READ- OUT	FULL SCALE INCHES	K-FACTOR & READOUT INTERVAL	DEAD TIME (s)
A1		Logea LMS-1	ster‡ 12	Fail West	.1ng- .on	Rect	cps	10.00	.0000033	31
TYPE OF PROBE Scintil.	I (RYSTAL IF SCIN 75° x 1	ITIL.) (NO. TUBE IF GEIGE	S TYPE R) HOL Stee	JSING :	HOUSING THICKNESS .120*	SII HOLE I	NG RATE: 5 CONSTANT: 2	ter ft/sec secnds 5 inches
CORRECTION HOLE INA DIAM.I INCHES	n fi Ter	ACTORS AIR	CAS THICK- NESS INCHES	ING FAC- TORS		E NATION Delow	CPS FULL- SCALE	CPS OR MR/HR PER INCH	RANGE CODE "A-E" FOF "CE-FIELD" POS 5 :	RMATS.
2.5\$ 1.1 4.5 1. 6.5 1. 8.5 1.	15 28	.90 .94 .96 1.08	?-	?	10)00 l	200 400 1000 2000 4000 5000 10000 20000 40000 20000 40000 40000	20 40 100 200 400 500 1000 2000 4000 20000 40000	1 1 1 1	1 23 4 5 6 7 8 9 0 1 23
ADDITION DETAILS:	ADDITIONAL #Scales and factors have been modified from original. DETAILS:									

TABLE OF FACTORS AND CODES FOR URDAT BOREHOLE SAMMA-RAY LOG DATA. DATE:

FIGURE 5.2A EXAMPLE TABULATION OF GAMMA-LOG FACTORS, SCALES & RANGE CODES- TYPE BI

GAMMA LOG TYPE CODE	L & PRC			RECORDER RECRD MANUFACTURER TYPE		TYPE READ- OUT	FULL SCALE INCHES	K-FACTOR	DEAD TIME (BS)
A3	Centu Model	iry x t	Brow	in	Rect	cps	5.00	.0000033	3
TYPE OF PROBE Geiger	CRYSTAL (IF SCIN	(TIL.) (() +	NO. TUBES IF GEIGER 7 1.357° ea	1): HOU - + Ste	ISING	HOUSING THICKNES .122	SII HOLE LOGGI	-FACTOR BASE MEDIUM: AI NG RATE: 5 CONSTANT: 23 DIAM: 4.5	r ft/sec
CORRECTION HOLE WAT DIAM. I INCHES		CASI THICK- NESS INCHES	ING IFAC- ITORS	RANE Design	E IATION I	CPS FULL- SCALE #	CPS OR MR/HR PER INCH 1	RANGE CODE "A-E" FOR "CE-FIELD" POS 5 :	MATS.
4.5 1.	00 1.28	.0625 .1250 .1875 .2500 .3750 .5000	1.21 11.38 11.55 1.71 2.03 2.39	5000 10000 50000	(1K) (2.5K)	50000 250000	5 10 250 500 1000 2500 1000 5000 10000 50000 100000		1 2 3 4 5 6 7 8 9 0 1 2 3
ADDITIONAL # Hypothetical unit: Factors and ranges entered are hypothetical; they DETAILS: simply provide order of magnitude of values, but do relate to test data.									

TABLE OF FACTORS AND CODES FOR URDAT BOREHOLE SAMMA-RAY LOG DATA. DATE:

FIGURE 5.2B EXAMPLE TABULATION OF GAMMA-LOG FACTORS, SCALES & RANGE CODES- TYPE A3

6AMM LOG TY CODE		a PRC	OF UNIT DBE TYPE L NO.)		IRDER Icturer	RECRD Type	TYPE READ- OUT	FULL SCALE INCHES	K-FACTOR & READOUT INTERVAL	DEAD TIME (ms)	
E1			UNIT 2 # 102	Westr	00163	Recti- linear		10.00	.00000463	5	
PROBE	TYPE OF CRYSTAL SIZE NO. TUBES TYPE PROBE HOUSING K-FACTOR BASE PROBE (IF SCINTIL.) (IF GEIGER) HOUSING THICKNESS! HOLE MEDIUM: arr Scintil. 1.0" x 3.0" Aluminum .125" TIME CONSTANT: 2 secnds Scintil. 1.0" x 3.0" Aluminum .125" TIME CONSTANT: 2 secnds CORRECTION FACTORS CASING RANGE CPS CPS OR ! RANGE CODES FOR										
	WATER		CAS THICK- NESS INCHES	FAC-		E IATION	CPS FULL- SCALE	CPS OR MR/HR PER INCH	A-E FOR CE-FIELD	MATS.	
2.25 4.50 5.50 8.50	1.10	.99 1.00 1.05 1.04	?	?	50)k l	250 500 1000 5000 10000 25000 50000 100000	25 50 100 500 1000 2500 5000 10000		1 2 3 4 5 6 7 8	
	ADDITIONAL Data are valid for this logging unit. DETAILS:										

TABLE OF FACTORS AND CODES FOR URDAT BOREHOLE GAMMA-RAY LOG DATA. DATE:

FIGURE 5.2C EXAMPLE TABULATION OF GAMMA-LOG FACTORS, SCALES & RANGE CODES- TYPE E1

6AMMA LOG TYPE CODE	L & PR	OF UNIT OBE TYPE EL NO.)		IRDER ICTURER	RECRD	TYPE READ- DUT	FULL SCALE INCHES	K-FACTOR & READOUT INTERVAL	DEAD TIME (as)
EB	Hount Hodel		Ht. S	opris	Rect.	cps lanalog	4.27 (120 am)	Variable	< 1.0
TYPE OF PROBE Scint.	CRYSTAL (IF SCI)	NTIL.) I	NO. TUBE	(R) HO	PROBE JSING	HOUSING THICKNES	SII HOLE I	FACTOR BASH MEDIUM: air NG RATE: 5 CONSTANT:4 S	ft/sec
							HOLE ()IAM: 4.:	i inches
CORRECTION HOLE WAT DIAM. : INCHES:		CA THICK- NESS INCHES	ISING IFAC- ITORS	RANE Desigi	E NATION	CPS FULL- SCALE	CPS DR MR/HR PER INCH	RANSE CODE "A-E" FOF "CE-FIELD" POS 5 :	HATS.
2.25 1.0 4.50 1.0 6.5 1.1		.0625 .1250 .1875 .2500 .3750	1.33		50 100 200 500 2000 2000 5000 5000 2000 5000		105.93 211.86 423.73 1057.3 2118.64 4237.3 10593.		1 2 3 4 5 6 7 8 9 0
ADDITIONA DETAILS:	L Obtair	ied by p	hone from	l	00000 ; 1 00001 ; 1		21196.4	1	1

TABLE OF FACTORS AND CODES FOR URDAT BOREHOLE SAMMA-RAY LOB DATA. DATE: Jan. 19	IBLE OF FACTORS AND CODES I	IR URDAT SOREHOLE	SANNA-RAY LOS DAT	'A. DATE: Jan. 198
---	-----------------------------	-------------------	-------------------	--------------------

FIGURE 5.2D EXAMPLE TABULATION OF GAMMA-LOG FACTORS, SCALES & RANGE CODES- TYPE E8

43

column numbers		11111111112222222223333333334444444445555555555
	3	A1 20,40,100,200,400,500,1000,2000.4000,5000,10000,20000,40000, A3 5,10,25,50,100,250,500,1000,2500,5000,10000,50000,100000, E1 25,50,100,500,1000,2500,5000,10000 E8 10.59,21.186,42.37,105.93,211.86,423.73,1059.3,2118.64,4237.3,10593,21186.4,

FIGURE 5.3 EXAMPLE OF SAMPLE-TYPE CODES AND ASSOCIATED RANGE SCALES IN FILE "RNGTBL"

UDAT SYSTEM: FILES DESCRIPTION

Range Full Scale	Range	Full Scale	Range	Full Scale
# # of cps	\$	# of cps	\$	# of cps
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 23 24 25 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	300. (.3k) 400. (.4K) 500. (.5k) 1,000. (1K) 2,000. (2K) 2,500. (2.5K) 3,000. (3K) 4,000. (4K) 5,000. (5K) 10,000. (10K) 25,000. (25K) 30,000. (30K) 40,000. (40K) 50,000. (50K) 100,000. (100K) 200,000. (250K)	43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59 60 61 62	500,000, (500K) 1,250, (1.25K) 1,500, (1.5K) 7,500, (7.5K) 600, (.3K) 800, (.3K) 800,000, (8K) 80,000, (8K) 1,000,000, (1000K) 12,500, (12.5K) 1,600, (1.5K) 3,200, (3.2K) 640, (.54K) 9,000, (9K) 18,000, (18K)

L			1 1989						1					3888						4882
			105 +	181 +	1 8 2 +	1Ø3 +	184 +	185 +	1 86 +											
			187	186 +	1 9 9 +	118 +	111 +	112 +	113 +											-
			114 +	115 +	115 +	117 +	118 +	119 +	125 +	121 +										-
		122 +	123 +	124 +	125 +	126 +	127 +	128 +	129 +	134 +	131 +		AREA	4						
		132	133	134 +	135 +	136	137	136	139	148	141		-↓- BBB	-						_
	142	143	144 +	145 +	146 +	147	148	149 +	15Ø +	151 +	152	_	_							
ł	153 +	154 +	155 +	156 +	157 +	16 8 +	161 +	162 +	163 +	164 +	165 +	166 +	167 +	168 +						1
		169 +	179 +	171 +	172 +	173 +	174 +	175 +	176 +	177 +	178 +	179 +	182 +	181 +	18: +					
			183 +	164 +	185 +	186 +	187 +	168 +	189 +	198 +	191 +	192 +	193 +	194 +						
8-			195 +	196 +	197 +	198 +	199 +	288 +	28) +	2822 +	283 +	284 +	295 +	285 +	150 +			ARE	A	4
			2287 +	296 +	2899 +	218 +	211 +	212 +	213 +	214 +	215 +	216 +	217 +	218	21 +		228 +	AAA		
ŀ					221 +	222 +	223 •	224	225 •	226 +	227 +	228 +	229 +	238 +	23 +		232			4
					233 +	234 +	235 +	236 +	237 +	238 +	239 •	24 8 +	241 +	242 +	24: +	3				
						244 +	24	15 2 +	45 2 +	47 2 +	48 2 +	49 : +	259 25 +	51 : •	×52 +	253 +				
8-							25	54 2 +	55 2 +	55 2 +	57 2 +	58 3 +	259 26 +	548 : +	261 +	262 +	263 +	264 +		:
						26		66 2 +	672 +	68 2 +		78 3 +	271 27 +	72 : +	273 +	274 +	275 +	276 +	277	
\mathbf{F}						27		79 2 +	80 2 +	81 2 +	82 21 +	83 2 +	284 26	35 2 +	286 +	287	286	289 +	29£	4
								2	93 2 +	92 2 •		94 2 4	295 25		27 797	298 +	299	328	381	
							AR		Э	812 31 +	23 31 +	84 3 +	xes 34	163	¥17	386	329	319	r	
a –							cc	C					15	59 3	+	+ 312	+ 313	+ 314	315 +	
			296 +	ו									31	6 3	+	÷ Э18	319 +	+ 329		
╞	9 − 11	hole			nd nu	ber.							34	• 21 3	+	+ 323	+ 324	325		-
													32	26 3	27	326	329			
															•					

FIGURE 5.5 DRILL HOLE LOCATION MAP FROM DATA IN FILE STARDAT

46

.

UDAT PRIMARY FILES

<u>6.0 UDAT SYSTEN -- PRINARY FILES, INDIVIDUAL DATA FORMATS</u>

The format chosen for sample data entry depends on the type and form of data received (Section 3.0). Figure 6.1, "a" through "1", shows all data formats described below. The carets between columns at the base of each format indicate the position of assumed decimals. No decimal points are actually entered in any of the sample data formats, with the exception of the dead time (Section 5.3.5), and the special entry code for time base change (Section 6.3.2.4)

Note: Refer to Figure 4.1a-b for actual examples of any of the formats described below.

Field descriptions for common header record data elements discussed in Section 5.0 are noted briefly, but the detailed descriptions are not repeated. The specific fields for common entries described under the contiguous, unimetal format are noted, but not described in detail, for the contiguous bimetal, non-contiguous, and borehole formats.

See Section 1.5 for review of abbreviations and symbols.

6.1 CONTIGUOUS SAMPLE FORMAT

The "contiguous " sample format provides a method for entering sample data as a list of contiguous sample intervals, with each interval referenced by a sample thickness and corresponding grade(s). Samples are listed in order of increasing distance from the point of origin referenced by the collar elevation. Any intervals of zero grade must be entered as such. The interval represented by the depth to first sample is assumed to be of zero grade. There is no entry for "total depth sampled"; if a barren interval is known to exist beyond the sampled interval, it should be entered at zero grade.

There are two variations of the contiguous format: one for uranium assays only ("unimetal"), Figures 6.1a & b, and one for both uranium and vanadium assays ("bimetal"), Figures 6.1c & d. The only differences between these two formats are the sample-type code and the sample entries. A given sample set must be entirely in one format or the other.

Note: In the contiguous format, the header card contains the beginning sample intervals.

6.1.1 Header Record, Descriptive Data

Figures 6.1a (unimetal) and 6.1c (bimetal) show the header record formats.

6.1.1.1 Record Count C(1-3), E=N; see Section 5.1.4; leave blank or enter zero. 6.1.1.2 Area Number C(4-6), E=A; see Section 5.1.2.

6.1.1.3 Hole Number C(7-12), E=A; see Section 5.1.1

6.1.1.4 Sample-Type Code 1 Cl3, E=A; see Section 5.2.1; for unimetal, enter "1", ""2", 3", or "4"; for bimetal, enter "V".

6.1.1.5 Sample-Type Code 2 Cl4, E=N; see Section 5.2.1; for unimetal, leave blank; for bimetal, enter "1" if uranium assays are considered "uncorrected" for radiometric disequilibrium, enter "2" if they are considered as chemical equivalent.

6.1.1.6 Sample-Type Code 3 C15; leave blank.

6.1.1.7 North Coordinate C(16-22), E=N, D=O; see Section 5.2.2.

6.1.1.8 East Coordinate C(23-29), E=N, D=O; see Section 5.2.2.

6.1.1.9 Collar Elevation C(30-35), E=N, D=1; see Section 5.2.3.

6.1.1.10 Pit-Bottom Depth C(36-39), E=N, D=1; see Section 5.2.4.

6.1.1.11 Depth to Oxidized/Non-oxidized Contact C(40-42), E=N, D=1; see Section 5.2.5.

6.1.1.12 Depth to Top of First Sample Interval C(43-47), E=N, D=1; see Section 5.2.6.

6.1.1.13 Property Code C(73-79), E=A; see Section 5.1.3.

6.1.2 Header Record, Sample Data

6.1.2.1 Unimetal Sample Interval Data

Each sample interval is represented by a thickness, (E=N, D=1) and a corresponding uranium grade (E=N, D=2). Thicknesses are entered to the nearest tenth of a foot. Up to 3 digits are allowed with a decimal assumed one place to the left of the right most digit (MV = 99.9 ft). Uranium grades are entered to the nearest one hundredth of one percent U308. Up to 3 digits are allowed with a decimal assumed two places to the left of the right most digit (MV = 9.9%U308).

The first four sample intervals entered in the header record starting in Column 49 (Figure 6.1a). The remainder are in continuation records (Figure 6.1b).

If a given sample interval is greater than 99.9 feet, then it must be split into 2 or more samples of the same grade, each of which is less than 100 feet.

Uranium assays of 10 percent or greater are not common, but if they are encountered, then the "non-contiguous" sample format (Section 6.2) must be used instead of the contiguous format.

6.1.2.2 Bimetal Sample Interval Data

Each sample interval is represented by a thickness (E=N, D=1), a corresponding vanadium assay (E=N, D=2), and a corresponding uranium assay (E=N, D=2). Thicknesses are entered to the nearest tenth of a foot. Up to three digits are allowed, with a decimal assumed one place to the left of the rightmost digit (MV = 99.9 ft). Vanadium grades are entered to the nearest one hundredth of one percent V205. Four digits are allowed with a decimal assumed 2 places to the left of the rightmost digit (MV = 99.9%V205). Uranium grades are entered to the nearest one hundredth of one percent. Three digits are allowed, with a decimal assumed two places to the left of the rightmost digit (MV = 9.99%U308).

The first 2 sample intervals are entered on the header record, (Figure 6.1c) starting in Column 53. (Columns 49 to 52 are not used). The remaining sample intervals are entered in continuation records.

If a sample interval is 100 feet or greater, the same procedure is used as described in Section 6.1.2. If a uranium grade is higher than 9.99%, then it must be "diluted" to a grade lower than 10.0% by combining it with adjoining samples.

6.1.3 Continuation Records

Figures 6.1b (unimetal) and 6.1c (bimetal) show the continuation record formats.

A maximum of 14 continuation records are allowed for the unimetal format and 24 continuation records for the bimetal format.

6.1.3.1 Record Count C(1-2), E=N, D=O; see Section 5.1.4; enter the number of the continuation record; i.e., "1" for the first, "2" for the second, etc.

6.1.3.2 Area Number C(3-6), E=A; must be exactly the same area number as that entered in the header record.

6.1.3.3 Hole Number C(7-12), E=A; exactly the same hole number as in the header record.

6.1.3.4 Unimetal Sample Interval Data The entries for sample intervals are exactly the same as for those on the header record (Section 6.1.2.1) except that up to 10 intervals are allowed per continuation record, starting in Column 13 (Figure 6.1b).

6.1.3.5 Bimetal Sample Interval Data The entries for sample intervals are exactly the same as for those on the header record (Section 6.1.2.2) except that up to 6 intervals are allowed per continuation record, starting in Column 13 (Figure 6.1d).

6.1.3.6 Property Code C(73-79), E=A; exactly the same property code as in the header record.

6.2 NON-CONTIGUOUS SAMPLE FORMAT

The "non-contiguous" format (Figures 6.1e and 6.1f) has the same entry forms as defined for the "contiguous" format (Section 6.1) except as follows:

1. The sample-type codes in the header record.

2. The representation of the sample intervals.

3. The entry, in the header record, for "total depth sampled" substitutes for "depth to first reading" since the latter is inferred to be the first of the sample interval entries.

Sample intervals are defined by: an elevation or depth to the top of the sampled interval; the thickness of the interval and corresponding grade of the interval. Sample-type code 3 denotes whether depths or elevations are involved. The sample intervals must be at successively greater distances from the point of origin referenced by the collar elevation.

This format is designed primarily for the entry of data which is received in such form that it is easier to use than the "contiguous" format. Example: if a set of radiometric logs has already been interpreted and the only sample data available are the depth (or elevation) of predefined anomalies, then the non-contiguous format is most appropriate.

Intervals of "barren" material need not be entered. Any implied interval between one entry and the next is assumed to be barren. Example: if one entry represents 125.5 feet in depth, 10 feet thickness and 0.10% U308; and the next entry represents 140.0 in depth, 5 feet in thickness and 0.20% U308; then actually 3 three intervals are generated as follows:

> 10.0 ft. @ 0.10% U308, 4.5 ft. @ 0.00% U308, and 5.0 ft. @ 0.20% U308.

Note: It is necessary to insure that the interval implied by one elevation or depth and corresponding thickness does not overlap onto the next interval, or the data will be rejected! Example: An interval represented by an elevation of 5000.0 feet and a thickness of 10.0 feet could not be followed by an interval with elevation of 4991 feet.

6.2.1 Header Record

The header record format is shown on Figure 6.1e.

6.2.1.1 Entries Identical to Those in the "Contiguous" Format Data elements in the non-contiguous format which have the exact same format as for the contiguous format on header and/or continuation records (Section 6.2.1) are: record count, area number, hole number, north and east coordinates, collar elevation, pit-bottom depth, depth to oxidized/unoxidized contact, and property code.

Data elements which differ from those in the contiguous format are listed as follows:

6.2.1.2 Sample type code 1 Cl3, E=A; see Section 5.2.1; enter "6", "7", "8", or "9".

6.2.1.3 Sample type code 2
C14, E=A; see Section 5.2.1; enter a "1".

6.2.1.4 Sample type code 3 C15, E=A; see Section 5.2.1; enter a "1" or "2". If "1", the elevation/ depth entry denotes elevation at the top of each sample interval; if "2", the elevation/depth entry denotes depths to the top of each sample interval from the point referenced by the collar elevation. 6.2.1.5 Total Depth Sampled C(44-48), E=N, D=1; see Section 5.2.7; this entry is used in place of the depth-to-first reading used in the contiguous format.

6.2.1.6 Sample Interval Data Each sample interval is represented by an elevation or depth (E=N, D=1), a thickness (E = N, D = 1), and a corresponding uranium grade (E=N, D = 2).

Elevation or depths are entered to the nearest tenth of a foot. Up to five digits are allowed with a decimal assumed 1 place to the left of the right most digit (MV = 9999.9 ft).

Thicknesses are entered to the nearest tenth of a foot. Up to 3 digits are allowed, with a decimal assumed 1 place to the left of the rightmost digit (MV = 99.9 ft).

Grades are entered to the nearest hundredth of a percent U308. Up to 4 digits are allowed with a decimal assumed 2 places to the left of the right most digit (MV = 99.99%U308).

The first two sample intervals are entered on the header record starting in column 49.

If a given sample interval is greater than 99.9 feet, it must be split into one or more intervals of less than 100 feet.

6.2.2 Continuation Records

The continuation format is shown on Figure 6.1f. A maximum of 29 continua tion records are allowed.

6.2.2.1 Sample Interval Data

The entries for sample intervals are exactly the same as for those in the header records (Section 6.2.2.6), except that up to 5 intervals are allowed per continuation record, starting in column 13.

6.3 BOREHOLE LOG FORMAT

The borehole log format is utilized when entering data derived from continuous readings from borehole logs. The term "readings" is defined in Section 3.3. The term "range code" refers to numeric codes which are used on printed strip logs to denote the number of counts-per-second (cps) represented by a given amount of deflection of the radiometric amplitude curve. This is described in detail in Section 5.2.1.1.

There are several variations of the borehole log format: the "A~E", and the "F11", "F1U", "F1C", and "FnQ" formats. The choice of these formats depends primarily on the type of readings available for a given sample set.

1. Inch-deflections measured when digitizing radiometric strip logs (Section 3.3.4) may be entered in the "A-E" or "Fil" formats.

UDAT PRIMARY FILES

2. Counts-per-second from direct readout during logging procedures or measured from a strip log using hand/overlay techniques (Sections 3.3.1, 3.3.2, & 3.3.4) are entered in the "FlU" and "FlC" depending on whether they are uncorrected or corrected for dead time.

3. Estimated U308 grade values (Section 3.3.3) are entered in the "FnQ" format, where "n" indicates whether or not disequibrium corrections have been applied.

Except for the sample-type codes (C13-15) on the header records, the variations in format primarily affect the form of the sample data entered in the continuation records. Therefore, the description of the header record (below) applies equally to all borehole log formats (except where specifically noted). Each of the types of continuation records are described separately.

6.3.1 Header Record

The header record format is shown by Figure 6.1g.

6.3.1.1 Entries Identical to Those in the "Contiguous" Format Data elements in the borehole log format which have the exact same format as for the contiguous format on header and/or continuation records (Section 6.1.1) are: record count, area number, hole number, north and east coordinates, collar elevation, pit-bottom depth, depth to oxidized/unoxidized contact, and property code.

```
6.3.1.2 Sample-Type Code 1
Cl3, E=A; see Section 5.2.1;
```

1. For the "A - E" format, enter "A", "B", "C", "D", or "E", depending on the appropriate set of range codes in files RNGTBL. This code will be used in conjunction with the numeric code in column 14.

2. For the "F" format, enter "F"

6.3.1.3 Sample-Type Code 2 Cl4, E=A, see Section 5.2.1;

> 1. For the "A - E" format, enter a number from "1" to "9", depending upon the appropriate set of range codes in file "RNGTBL". This code is used in fonjunction with the code in column 13.

2. For the "F (1,U,or,C)" format, enter a "l".

3. For the "FnQ" format, enter a "l" if grades in the continuation records are uncorrected for radiometric disequilibrium; enter "2" if they are corrected for disequilibrium. 6.3.1.4 Sample-Type Code 3 Cl5, E=A; see Section 5.2.1;

1. For the "A - E" format, enter an "I" if the log is rectilinear; or enter a "Z", if the log is curvilinear.

Note: the data entry and usage of curvilinear gamma-log data is not described in this first version of the guide.

2. For the "F" format, enter an "l" if the log is rectilinear and readings are in inches of deflection; enter a "U" if the readings are in uncorrected (for dead time) cps; enter a "C" if readings are in corrected (for dead time) cps; or enter a "Q" if readings represent actual uranium grades based on previous interpretation of the borehole log data. The "Z" (curvilinear data) cannot be used with the "F" format.

6.3.1.5 Total Depth Sampled (Logged) C(43-47), E=N, D=1; see Section 5.2.7.

6.3.1.6 Readout Interval C(48-49), E=N, D=1; see Section 5.3.1.

6.3.1.7 Depth to Hole Water C(50-52), E=N, D=O; see Section 5.3.2.

6.3.1.8 K-Factor See Section 5.3.3; enter three significant digits of k-factor in C(53-55), E=N, D=O; enter exponent (assumed to be negative) of ten in C56,E=N, D=O).

6.3.1.9 Air Correction Factor C(57-59), E=N, D=2; see Section 5.3.4.

6.3.1.10 Water Correction Factor C(60-62), E=N, D=2; see Section 5.3.4.

6.3.1.11 Dead Time C(63-66), E=N, D=O unless decimal is actually entered; see Section 5.3.5.

6.3.1.12 Full-Scale Deflection C(67-70), E= N, D=2; see Section 5.3.6; only used with "FII" format.

6.3.1.13 Logging Unit Type Code C(71-72), E=A; see Section 5.3.7.

6.3.2 Continuation Records

Continuation record formats are shown on Figure 6.1 "h" through "k".

A maximum of 37 continuation cards are allowed. The entries for record count, area number, hole number, and property code are the same as those for the header record.

Columns 13 and 14 are not used. Columns 15 through 72 are subdivided into 8 fields which will be hereafter termed "continuation entry fields" or CE-fields. Each CE-field consists of seven columns; these will be referred to as positions one through seven, with the leftmost position being "1" and the rightmost being "7". Position 1 is usually left blank and only used under certain conditions.

The first CE-field begins in column 15. Eight CE-fields are allowed per record; fields should not be skipped (entire field left blank) unless they follow the last valid reading of a sample set.

A CE-field may contain either a "reading" (which denotes inches-deflection, cps, or grade) or a "special entry". The sample-type codes in the header record determine which type of reading is used; only one type can be used in any given sample set. Most of the special entries apply equally to all borehole log data types; one is used only for inch-deflection readings taken from strip logs (Section 6.3.2.4).

6.3.2.1 Readings in Inches-of-Deflection

An "inches-of-deflection" reading is the distance ("deflection") from the baseline of a printed log to a point on the radiometric amplitude of the log and is measured along a line perpendicular to the baseline. It is entered to the nearest hundreth of an inch in positions 2 through 4 of the CE-field. Up to three digits are normally entered with a decimal assumed between positions 2 and 3. The deflections on a strip log seldom extend beyond 10 inches from the baseline. However, position 1 of the field may be used if the deflection is 10 inches or greater.

In order to define how many counts-per-second are represented by the measured deflection, a range code (Sections 5.2.1.1 and 5.2.1.2) must be entered in positions 5 and 7 of the CE-field (Figures 6.1, "j" & "k"). Position 7 contains the "unit" digit of the range code and position 5 contains the "tens" digit. Range codes do not consist of more than 2 digits. If the range code is 2, then position 7 will contain a "2" and position 5 is left blank; if the range code is 13, then position 7 contains a "3" and position 5 will contain a "1".

The "inches-deflection" type reading is used when digitizing a log by hand/ overlay or automatic methods. The type of range code used is determined by the Sample-Type Codes 1 and 2 (Section 5.2.1).

6.3.2.2 Readings in Counts-Per-Second

Counts-per-second ("cps") readings are obtained by direct measurement of the gross count radioactivity recorded by the logging sensor or by analysis of the deflection of the radiometric amplitude curve on printed logs. A "U" or "C" in column 15 (Sample-Type Code 3) on the header record automatically

identifies all radiometric readings in the continuation records as being in uncorrected (U) or corrected (C) cps.

Cps readings are entered to the nearest unit, in position 2 through 7 of the CE-field (Figures 6.1, j & k). Note: on these figures, the carets) do not apply to cps readings and should be ignored.

Up to 6 digits are allowed (MV = 999999 cps). If a value exceeds 9999999, then position 1 may be used for a "millions" digit.

6.3.2.3 Interpreted Uranium Values

"Interpreted values" represent actual estimates of uranium content (Section 3.3.3). They are entered to the nearest thousandth of one percent in positions 3 through 7 of the CE-fields as shown on Figures 6.1, j & k. The caret shows the position of the decimal assumed between positions 4 and 5 of the CE-fields.

6.3.2.4 Special Entries

The "special entries" (Figure 6.11) allow additional descriptive data to be entered in the the continuation records as well as providing for any changes, within a logged interval, in the original interpretaion parameters which are entered in the header record.

During the course of logging procedures, certain segments of a borehole are sometimes logged using different parameters. This happens frequently when a borehole is only partially logged because of blockage in the hole or malfunctioning of the logging equipment: when the borehole is later reopened and/or logged again, the portion which was previously logged may be skipped and the remainder logged with a different logging unit than previously used.

Except for the "depth to first reading" (below), special entries may occur in any CE-field except the very first and very last CE-fields. in a sample set. In addition, a given special entry cannot follow another like entry unless separated by at least one reading; for example, a special entry for time base change cannot immediately follow a previous time base change unless one or more readings intervene. One type of special entry may immediately follow a different special entry.

1. Depth to First Reading. The very first CE-field of the very first continuation record following any header record in the borehole log format must contain the value for the "depth to first reading". It is entered to the nearest tenth of a foot in position 2 through 6 with a decimal assumed between positions 5 and 6 (MV=9999.9 ft, see Figures 6.1h and 6.1j). A lower case dash ("-") must be entered in the 7th C-E field position.

2. Skipped Interval. Wherever readings have been deleted ("skipped") because of obvious lack of significant representative radioactivity, the thickness of the "skipped" interval is entered in the CE-field following the last reading entered. The thickness is entered to the nearest tenth of a foot in positions 2 through 5. Up to 4 digits may be entered, with a decimal assumed between positions 4 and 5, (MV=999.9 ft). The thickness of

a skipped zone rarely exceeds this magnitude but if necessary, a "thousands" digit may be entered in position 1.

A CE-field for a skipped interval may be entered between any readings of the sample set except:

- at the beginning, since the depth to first reading is essentially a skipped interval,

- at the end, or,

- immediately following another skipped interval entry. Note that the decimal positon in the CE-field for skipped intervals is not the same as that for the "depth to first reading".

Position 6 is not used and a lower-case dash ("-") must be entered in position 7.

3. Date Logged. An optional entry for the date on which the log was made is provided by the special CE-field for "date". The number of the month is entered in positions 2 and 3, and that for the day in positions 4 & 5. Position 6 is not used and a "D" must be entered in position 7.

4. Logging-Speed ("Time Base") Change Factor. The "logging speed" is the rate, in distance/time (feet/minute), at which the logging sensor travels along the borehole. If a hole is logged at a rate significantly different from that used when determining the k-factor (the "base" logging speed"), an appropriate correction must be applied to the k-factor.

This may be done by entering a "time base change factor" (Figure 6.1k) in the CE-field of a continuation at the point where the change takes place. The factor is entered to the nearest hundredth of a unit in positions 2 through 6 of the appropriate CE-field. Up to 5 digits are allowed, with a decimal assumed between the positions 4 and 5 (MV=999.99). A "period" (".") must be entered in position 7.

The value of the change factor must be that necessary to properly correct the k-factor divided by base speed. Any recorded or calculated cps value following the logging-speed change entry will be automatically multiplied by the change factor.

For example: if a k-factor were determined at a logging speed of 5 feet per minute, but a change to a speed of 10 fpm was indicated on a log, then the entry for the logging speed change factor would "2.0", assuming that the number of counts per second recorded over a given interval was inversely proportional to the logging speed. This is not always true, so when changes in logging speed are encountered in borehole log data, the equipment manufacturer should be consulted to determine the actual effects of such changes. If and when it is indicated that the logging speed has reverted to the "base" speed, then another logging-speed change entry must be made, with the factor entered as "1.0".

The "base" logging speed for radiometric readings in a sample set is not entered as a data element, since it is assumed to be the one which was used in establishing the k-factor. However, it should be known and recorded for reference purposes (see Figures 5.2a & b).

The time base change factor entry can also be used to correct for other changes in logging conditions which may affect the validity of the given k-factor. Simply remember that it is a muliplicative factor applied directly to the value for counts-per-second.

The term "time constant" (see Section 17) refers to the electronic instrumentation of radiactivity-recording equipment and is the interval of time over which gamma-rays are actually "counted" internally before being recorded as (average) counts per second on an analog-chart or digital rate-meter.

If the time constant used in logging a hole is significantly different from that used when the k-factor was established, there will be differences in the configuration of the anomalies. A time constant increase will result in a dampening effect of the "highs" and "lows", while a decrease will intensify the "relief" of the anomalies. In general, the higher the time constant, the lower the logging speed should be.

Too high an increase in time constant may affect the validity of the k-factor, and as with the logging speed, the effects of such changes should be understood and taken into consideration. The "time-base change factor may be used to make the appropriate corrections.

5. Dead Time Change. The entry for the dead time in the header records provide for a value of up to 9999 microseconds or a decimal value of 3 significant digits (which covers most estimated dead times). However should the dead time: 1) exceed 9999 microseconds; 2) be reported as a decimal fraction with more than 3 significant digits, or 3) change within the logged interval; two special entries are provided.

The first is for dead times greater than 9999 microseconds. The dead time is entered to the nearest microsecond in positions 2 through 6 of the CE-field. Up to five significant digits may be entered with the decimal assumed to the right of position 6 (MV=99999 microseconds). A "plus" sign ("+") must be entered in positon 7.

The other entry is for fractional dead times consisting of more then 3 digits to the right of the decimal. The dead time is entered in positions 2 through 6 of the CE-field. Up to five significant digits may be entered, with the decimal assumed between positions 2 and 3 (MV=9.9999 microseconds). An "S" must be entered in position 7.

6. **K-Factor Change.** The entry for K-factor in the header record provides up to three significant digits. If more than 3 significant digits are required, or if the k-factor should change within the the logged interval, a special entry is provided. The k-factor is entered in positions 2 through 5 of the CE-field and the exponent is position 6. Up to 4 significant digits may be entered with a decimal assumed to the right of position 5. Position 6 contains the (negative) exponent of 10 as described in Section 5.3.3. A "K" must be entered in position 7.

7. Readout Interval. Any change in the interval at which readings are recorded within given borehole are entered to the nearest tenth of a foot in positions 2 through 5 of a CE-field. Up to 4 digits may be entered, with a decimal assumed between positions 3 and 4 (MV=99.99 ft). An "1" must be entered in position 7.

8. Chart Baseline Change. This entry is useful when digitizing a radiometric strip log which contains one or more changes or "shifts" in its effective baseline. A shift to the right (towards the amplitude curve) is recorded as a positive change, and a shift to the left as a negative change. The distance of the shift from the original baseline is entered to the nearest hundredth of an inch in positions 3 to 5 of the CE-field. Up to three digits are allowed with a decimal assumwed between positions 3 and 4. If the shift is negative (away from the amplitude curve) a negative or "minus" sign ("-") must be entered in position 2. A "B" must be entered in position 7.

This entry precludes the neccessity of having to change deflection measurements from the original baseline to a new baseline if a shift occurs and is especially convenient when digitizing logs by automatic methods.

6.4 LITHOLOGIC DATA RECORDS

Lithologic data, in UDAT primary files, consist of:

1. 4-character alphanumeric codes that represent intervals identified as geologic units.

2. Corresponding depths, from the collar elevation reference point, to the top of each unit.

Lithologic units are usually determined in "bedded sandstone" type uranium deposits by examination of resistivity, self-potential, and other types of borehole geophysical logging data. Such data may be present on the same strip log that contains the gamma-ray log or they may be obtained from some other source. Geologic data may also be available as records of core or sample cuttings.

The purpose of including lithologic data in the UDAT files is to provide a method of selecting particular samples from a total sample set during an ore reserve calculation. This is especially useful when the deposit consists of more than one ore "horizon" and it is desired to evaluate one particular horizon independently from the other (s).

Before deciding which units to identify for a group of sample sets, the geologic features of the entire area under evaluation should be reviewed with respect to their relationship to the uranium occurrences. Units should be selected beforehand so that they will be useful in segregating one integral portion of a deposit from other portions. This requires a reasonable amount of study of the correlation of units from one sample set to another , (or one borehole log to another).

Once a series of units has been selected, the same 4-character code assigned to a given unit should be kept the same for all entries relating to that unit. There should not be any "gaps" in the series; i.e. no units should be left out between the starting (uppermost) and ending (lowermost) units of the series. Entirely barren units must be included as well as those containing evidence of uranium mineral. For each sample set which will include lithologic data, an entry must be made for every unit in the series. Special codes are provided for units which are missing or which lie below the bottom of the sampled interval. The same strict rules apply to entering litho logic codes as do the hole numbers, i.e. all code entries for the same unit must be identical.

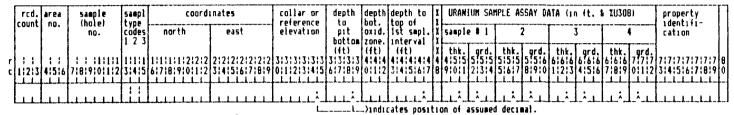
Figure 6.2 shows the format for entering the lithologic data. The area number, hole number, and property code are entered exactly as on the header record for the given sample set. The record count or "index" number should start with 100 or 101. Sample-type code 1 (C13) must contain an "L". C(14-15) are blank.

Each record contains entries for up to 14 lithologic unit codes and corresponding depths to top of the unit ("top picks").

Units are entered by order of increasing distance from the collar elevation reference point. The 4-character code for the uppermost or closest unit is entered in C(16-19) and the corresponding top "pick" is entered, right-justified, to the nearest foot in C(20-23); MV=9999. Additional entries are made accordingly as shown on figure 6.2. If there are more than 14 units, another record may be entered. However, all entries in the first record must be filled before another "L" record is used. The maximum number of units is 28 or 4 "L" records.

For any unit of the established series which is missing, including the first and last unit, the unit lithologic code must still be entered in proper sequence and a "-l" entered in the last 2 positions of the corresponding depth entry. Lithologic units in the established series which lie (or are presumed to lie) below the lowest recognized unit in the sampled interval, must also be entered, in proper sequence with the code "-2" entered in the last 2 positions of the corresponding depth entry. In any given sample set, the same lithologic unit code must not be repeated.

As an example, Figure 6.3 shows three hypothetical drill holes -- "HYP1", "HYP2", and "HYP3" -- from a (hypothetical) area in which 8 lithologic units have been identified. The lithologic unit codes are, from top to bottom:


60

"KMC ", "KBC ", "JMUI", "JMC ", "JML2", "JML1", "JSMV", and "JTDL". For each hole, the elevations of the collar, bottom, and intersection with the top of every unit encountered are noted.

Figure 6.4 illustrates the lithologic data ("L"-format) records which would be prepared and added to the sample assay data for each hole. For hole HYP1, the units and corresponding entries are recorded as follows: "KMC" is miss ing and the depth entry is therefore "-1"; the hole is collared in unit "KBC", so the depth entry is "O"; the depth from collar to the top of unit "JMU1" is 90 feet and is entered accordingly, as are the depths to units "JMC", "JML2", and "JML1"; units "JSMV" and "JTDL" have not been encountered, so their depth entries are both "-2".

For hole HYP2, unit "JMC" is missing and its depth entry is "-1". For hole HYP3, "JML1", "JSMV", and "JTDL" have not been encountered and their depth entries are "-2". Note that the unit codes are always entered in identical fashion and that "-1" and "-2" entries are always entered in the rightmost two digits of the depth entry field.

Note: Some of the sample sets in test file GAMDAT (Figure 4.1a-b) contain examples of lithologic records. Test file STARDATL also contains a set of UDAT sample assay data with lithologic records.

F16URE 6.1A. Contiguous Format (unimetal), Header Record.

URANIUM SAMPLE ASSAY DATA (Thickness in feet, grade in 20308) rcd, area sample property count no. (hole) identifi-5, 15, 25, etc | 6, 16, 26, etc | 7, 17, 27, etc | 8, 18, 28, etc | 9, 19, 29, etc | 10, 20, 30etc | 11, 21, 31etc | 12, 22, 32etc | 13, 23, 33etc | 14, 24, 34etc | no. cation thk. grd. thk. g 1.1 7171717171717 1 1 2:3:4 5:6:7 8:9:0 1:2:3 4:5:6 7:8:9 0:1:2 3:4:5 6:7:8 9:0 1 2:3:4 5:6:7 8:9:0 1:2:3 4:5:6 7:8:9 0:1:2 3:4:5:6:7 8:9 0 c 11213 41516 71819101112 31415 61718 91011 1.1 11 1.1.1.1.1 11 11 1.1 11 11 1.1 1.4 1.1 i i 11 11 11 111111 : 1

FIGURE 6.18. Contiguous Format (unimetal), Continuation Record.

rcd. area coordinates collar or depth depth to IIIIII URANIUM & VANADIUM SAMPLE ASSAY DATA sample sampl depth property (hole) count no. top of XXXXX 1st smpl. XXXXX type reference to to ìdentifinorth pit 2 no. codes east elevation bot. sample # 1 cation 123 bottom oxid. interval X X X X X 11 1.1

FISURE 6.1C. Contiguous Format (bimetal), Header Record.

rcd. count		sample (hole)	URANIUM AND VANADI	RANIUM AND VANADIUM SAMPLE ASSAY DATA (Thickness in feet, grades in 20308 & 2v205)										
		no.	3,9,15,etc.	4,10,16.etc	5,11,17,etc.	6,12,18,etc.	7,13,19,etc.	8,14,20,etc.	property identifi- cation					
r : :		: : :1:1:1	thk. grd. V grd.U	thk. ord. V grd.U	thk. grd. V grd.U	thk. grd. V grd.U	thk. grd. V grd.U 5:5:5 5:5:5:5 6:6:6	thk. grd. V grd.U	7,7,7,7,7,7,7					
c 1;2;3	41516	71819101112	3:4:5 6:7:8:9 0:1:2	3:4:5 6:7:8:9 0:1:2	3:4:5 6:7:8:9 0:1:2	3:4:5 6:7:8:9 0:1:2	3:4:5 6:7:8:9 0:1:2	31415 617 819 0112	3 4 5 6 7 8 9 0					
Lu		╶╂╍基╼╂╼╂╼╂												

FIGURE 6.1D. Contiguous Format (bimetal), Continuation Record.

rcd. count		sample (hole)	saapl type	coordin	nates	collar or reference	depth to	depth to	total depth	X	URANIUM SA	MPLE A	ISSAY DA	TA (1n ft.	1 IU30	18)	property identifi-	
		no.	codes 1 2 3	north	east	elevation	pit battan	bot.	sampled	X X	sample i				2		cation	
r i i i			11111	111111121212	212121212121212	3:3:3:3:3:3	31313131	zone 4:4:4	414141414	4	dpth/elev 415151515	thk. 5:5:5	grd.U 5151516	dpth/elev 616161616	thk. 61616	grd.U 6:7:7:7	7171717171	7178
	41310		31413				-t-L-L-	01112	31413161/ _L_L_L_L	8	91011213	41316	/181910		61718	9:0:1:2	3:4:5:6:7	8,90
L	L				<u> </u>	لنسب	لخبيت			L		لنبا	لسنسا			1.1		

FIGURE 6.1E. Non-contiguous Format, Header Record.

. . .

rcd. area	Sample (hole)	URANIUM S	URANIUM SAMPLE ASSAY DATA (Thickness in feet & grade in 20308)											property identifi-				
	ND.		3,8,13,etc.				4,9,14,etc.			5,10,15,etc			, 16, et:			, 17, et		cation
E 1 2 3 4 5 6	7.8.9.0.1.2	dpth/elev 1:1:1:1:1:1 3:4:5:4:7	thk. 11112	grd.U 2121212	dpth/ 21212	elev 1212	thk. 31313	ord.U 3131313	dpth/elev 3:3:3:4:4	thk. 4:4:4	grd.U 4:4:4:4	dpth/elev 415:5:5:5:5	thk. 51515	grd.U 5151516	dpth/elev 6:6:6:6:6	thk.	grd.U 6:7:7:7	7:7:7:7:7:7:7
	11111		-1-1-			<u></u>												

FIGURE 6.1F. Non-contiguous Format, Continuation Record.

rcd. count	area no.	sample (hoie)	samp1 type	coordi	nates	collar or reference	depth to	depth to		r/o int	depth to		air corr.	H2O corr.	dead time,	full- scale	log	property identifi-	Π
			codes	north	east	elevation		bot.			hole H20	lē	fact.	fact.	elcro-	defl.	cde	cation	
			123				bott on	zone		ft.	nzu	10	[seconds	Inches			
r	11	: : :1:1:1			2121212121212		3:3:3:3	4:4:4											
c[1]2]3	4:5:6	7:8:9:0:1:2	31413	6:/:8:9:0:1:2	3:4:5:6:7:8:9	0:1:2:3:4:5	61/1014		31413161/	014		3141318			3:4:5:6	[/:U:9:0 1.1.1_1	112	3:4:5:6:7:8:4	10
						•	•			•									T
		╶┨╶┨╶┫┈┫╼┫╼╎		╶┺╼┺┯┺┯┻┯┻┈┚┈╵		<u></u>	L_L_L^_	[<u></u> ^	L^	⊥⊥⊥ii _⊁ The	interva	L_^_L L renzi	1_^_1_ pspntp	<u>l_l_i_i</u> d hv the	reading		values.	-1-1

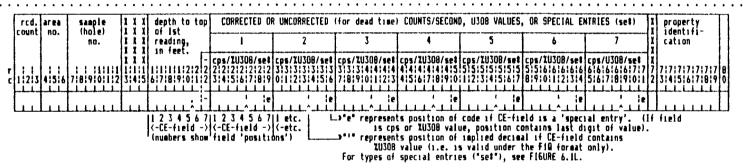


FIGURE 6.1H Borehole Log Format, Counts Per Second Or U308 Values; First Continuation Record.

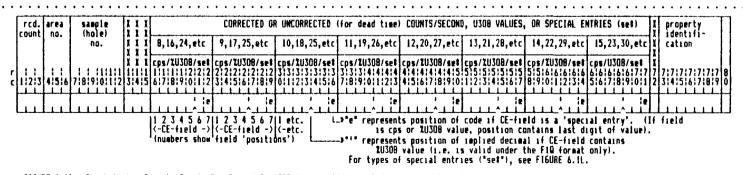
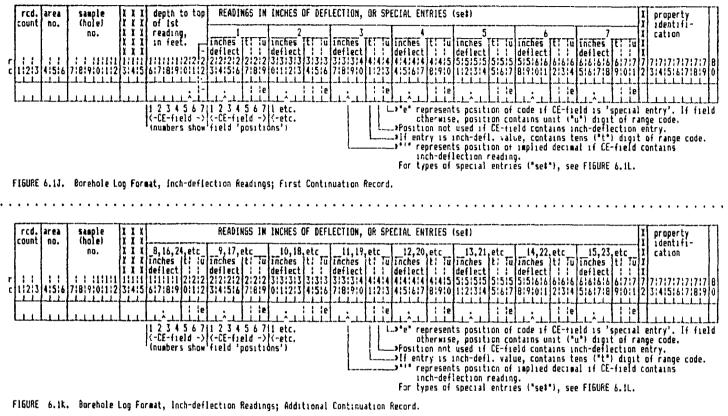



FIGURE 6.11. Borehole Log Format, Counts Per Second Or U308 Values; Additional Continuation Record.

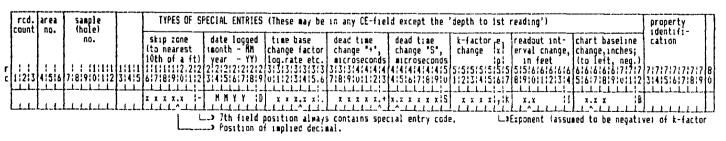


FIGURE 6.11. Special Entries For Borehole Log Continuation Record Formats.

UDAT
PRIMARY
FILES

.

	area	sample (hole)	C X O X	Хp	icks	1,8,etc.	2,9	,etc.	3,1	0,etc.	4,1	l,etc.	5,12	etc.	6,1	S,etc.	7,1	4,etc.	Ι	property identifi-	Π
count	no.	no.	dX		lith.	top depth	lith. unit	top depth	lith. unit	top depth	unit	top	unit	top	unit	top	unit	top	X	cation	
			Ĩ.		unit code	(ft)	code	(ft)	Code	(ft)	A • A • A • A		4141515	5151515	5151515		*****	6:6:7:7	Ŷ	7+7+7+7+7+7	
c 1 2 3	4 5 6	7 8 9 0 1 2	34	56	718	9:0111213	4151617	8 9 0 1	2131415	617 819	01123	4151617	8 9 0 1	2131415						3 4 5 6 7 8 9	10
	f - 1 - 1 - 1 - 1		L	1	*** 					(- - - - 									11
	1_1_1_	└ _┟ _─ ┟ _─ ┟ _─ ┟ _─ ┟ _─ ┟ _─			1_1_1	╺╁╺╁╺┟╺╁╺	╏┈┠╲┠┈┠╌	└─╽─╽─╽	└┯╇╼╋╼╄		L_L_L_	L_1_L_L_	┇┉┠┉┠┉┠ _╼ ╽	╺╼┻┈┺╼┺╼┙		┟┯Ă╤╊╤╊╼┦	└─┠─┠─┠ ─. ∕	┟╍┹╍┹╼╂╼	_1		.L.,

.

FIGURE 6.2. Lithologic Data Format.

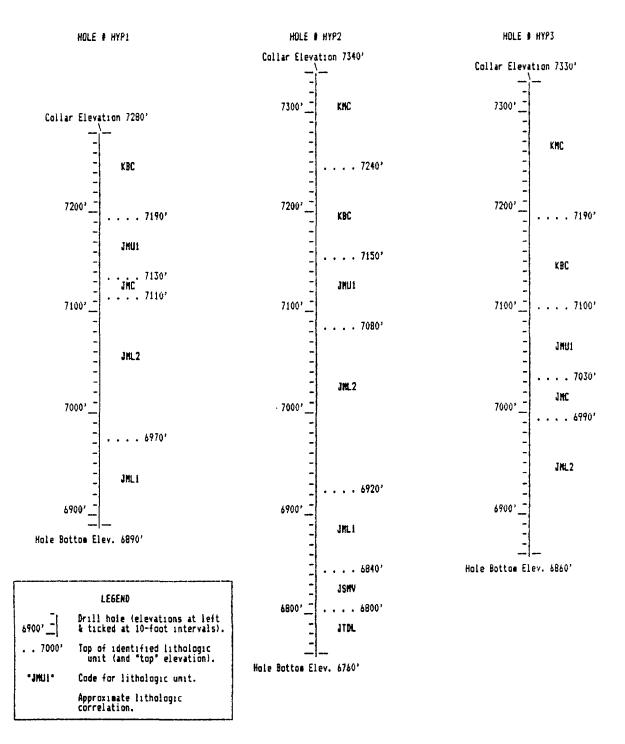


FIGURE 6.3. Illustration Used To Demonstrate Entry Of Lithologic Data.

r ^{Re}	cai	rd	Forma	at 1										
column number			23458	1 57890	1111 1234	111112 567890	22222222 1234567	223333333 890123456	333444 7890123	44444455	55555555 23456789	666666666 012345678	6777 9012	77777778 234567890
Record	-			HYP1 Hyp1	L	KMC JTDL	-1KBC -2	0JMU1	90JMC	150JML2	170JHL1	310JSMV		HYPAREA Hyparea

Lithologic ("L") records for hole number HYP1.

r Record Format 1

column numbers	>12											77777778 23 45 67890
Record	1 10 2 10	•	-	KHC JTDL	0KBC 540	100JHU1	90JHC	-1JHL2	260JHL1	420JSHV	500	HYPAREA Hyparea

Lithologic ("L") records for hole number HYP2.

r Record Format 1

r "``	201			1										
column	_	1								44444455				
number	5.	> 12	345678	3901	234	56789	01234567	89012345	6789012	345678901	23456789	012345678	901234567	7890
Record	1 2	10		(P3 (P3	L	KMC JTDL	0KBC -2	140JMU1	230JHC	300JHL2	340JML1	-2JSMV	-2 HYPAF Hypaf	

Lithologic ("L") records for hole number HYP3.

FIGURE 6.4. Example: Data Entry Of Lithologic Information Illustrated In Figure 6.3.

<u>7.0 THE UCON SYSTEM</u>

In order to process the uranium sample data, the URAD programs must be provided with the ability to: 1) specify the file(s) on which the sample sets reside, 2) indicate which of the sets are to be included in a given run. 3) perform any additional necessary operations on the samples, and 4) access the files and obtain the specified sample sets.

"UCON" (Uranium sample input CONtrol) is the name given to the system which controls these operations.

A "UCON file" is an independent set of data consisting of instructions which completely define all the sample set data which will be used in any RUN of a URAD program. A UCON file is in the "formatted" mode and contains records with length of 80 characters or less. Every time a URAD program is run, it simply requests the name of the particular UCON file designated for the given RUN; and during the RUN, the file is automatically interrogated for instructions until all sample data data designated by the file(s) have been processed.

An appropriate UCON file must be prepared by the user before any URAD program is run.

7.1 DEFINITION OF A "BLOCK"

A "block" is simply a group of UDAT sample sets defined by a set of instructions in a UCON file.

7.1.1 Block as Used With Program URDAT

In one RUN, program URDAT will process the sample sets (from one or more primary (basic) UDAT files) defined by one, and only one, UCON block, and (optionally) output the processed data onto a single secondary UDAT file.

7.1.2 Blocks as Used With the Ore Reserves Programs

In one RUN, programs RESUV, ORSAC, or SCOR may process the sample sets (from one or more intermediate UDAT files) defined by up to 26 blocks, and calculate reserves for each block. For these ore reserves programs, a "block" assumes the added significance of including the areal dimensions, in square feet, of the reserve block, as well as the sample information to be used in the calculations.

Within the computer programs themselves, there is no actual "connection" between the block and its designated area. It is up to the user to determine which sample sets apply to the chosen block area (or vice versa). Generally, this is done by visual examination of maps, cross-sections and associated sample and geologic data. A group of sample sets is chosen, the outline of an area is drawn around the chosen sets, and the areal dimension is measured by planimeter, or by some other method.

THE UCON SYSTEM

However, there is no restriction in a UCON block that all sample sets defined by the block fall exactly within the confines of a predetermined areal outline. For various reasons, the user may choose to include, in the sample set definition, sets that fall outside the drawn or implied areal outline representing the block area.

7.2 OVERALL STRUCTURE OF A UCON FILE

In a UCON file, a block is defined by a series of records (Figure 7.1) which comprise a "block control module" ("BCM"). Each record is identified by an instruction code in columns 1 and 2 (Section 7.3). The first record of a BCM is a "BCM identifier" and the last record is a "BCM terminator".

The BCM identifier record contains a block code, a block area and a block name used to identify the block in ouput listings. (These parameters are defined in detail in Section 7.4) The block code and block area are not entered when program URDAT is run. If present, they will be ignored.

The BCM terminator record simply contains the "BCM terminator" code -- "*B", unless it represents the last BCM of the UCON file (see below).

Within a BCM there are one or more "file control modules" ("FCM"). Each FCM specifies the name of a UDAT file which contains sample sets to be included in the block as well as optional instructions for editing those sample sets. The first record of an FCM is the "FCM identifier" which contains the name of the file to be processed (and optional additional information). The last record of an FCM is the "FCM terminator" which simply contains the "FCM terminator" code -- "* ", unless it represents the last FCM of the given BCM (see below). One BCM may contain an unlimited number of FCMs.

The last record of every UCON file must be the RUN terminator, which contains the "RUN terminator" code - "**".

Figure 7.1 illustrates the general structure of a UCON file which contains one BCM which, in turn, contains one FCM. The "IC" records indicate optional additional edit instruction records (Section 7.6) within the FCM. If one terminator record follows another, the "lower-ranking" terminator records must be omitted as shown in Figure 7.1, where the RUN terminator record ("**") also serves as the BCM and FCM terminator records.

Figure 7.2 shows the overall structure of a UCON file which establishes three blocks. The first BCM contains three FCMs; the second, 1 FCM, and the third, 2 FCM's. An ore reserve program processing a UCON file having this structure will read the first BCM identifier record, and obtain sample data from each of the three files specified by the FCM's. When the first BCM terminator is encountered, the reserve program will complete calculations for the first block. It will then read the second BCM identifier, obtain sample data from the one specified file and complete another reserve calculation; and so forth. When the file terminator is encountered, the reserve program will complete calculations for the third block, complete any additional operations required, and terminate.

Note: in Figure 7.2, lesser-ranking redundant terminator records are omitted; i.e. the terminator record for the last FCM in each

block is omitted and the block terminator record serves to both terminate the FCM and the BCM. Similarly the RUN terminator serves to terminate the last BCM as well as the last FCM in the last BCM.

Since the concept of ore reserve blocks underlies the operation of all the reserve programs, it is important to understand that any ore reserve block in URAD is implicitly defined both by the sample sets included in a UCON block control module and the area assigned to that module.

7.3 UCON INSTRUCTIONS, GENERAL

To review, a block control module (BCM) in a UCON file consists of a series of 80 (or less)-character records starting with a BCM identifier record and ending with a BCM terminator record. Every record may be considered to consist of one or more instructions, with each instruction generally followed by parameters (or "operatives", see below) pertaining to that given instruction. Some instructions do not require additional operatives or the operatives are optional.

The following descriptions of the types and uses of the instructions may seem detailed and complicated. However, once the principals are understood, the user will find that it is very easy to construct a UCON file and that any sample data from any UDAT file may be identified and selected. The ease with which this is done will depend to a large extent in the planning and organization that was used in preparing the applicable UDAT primary (basic) or intermediate sample data files.

Each UCON instruction consists of a 2-character "operator" code (OPcode) generally followed by one or more parameters or "operatives". The first character of the operator code is designated as the "primary" operator code (or "OPcode1"); the second character is the "secondary" operator code (or "OPcode2"). The OPcodel is a unique character which specifies the generic type of instruction. OPcode2 refers to optional uses for the instruction or optional entries for the operatives. No spaces are permitted between the OPcode1 and OPcode2 of an instruction.

The instruction operator codes discussed below in the test are enclosed in double quotes. They may be shown as OPcodel only or as both OPcodel and OPcode2. However, quotes are never used with the operation codes when actually preparing a UCON file

Some operator codes must start at the beginning (first 2 columns) of a record. Others may appear anywhere in a record. Some secondary OPcodes are just "padding" (non-functional).

The operatives consist of numeric values or alphanumeric character "names". Alphanumeric names include: block codes, block names, file names, lithologic unit codes, hole numbers and area numbers. Block codes, block names, file names and lithologic unit codes must always be enclosed by single quotes (' '); the others are never enclosed.

Numeric operatives are: the block area, limiting elevations, disequilibrium coefficients, and limiting coordinates. A numeric operative must always include the decimal point if it is entered as a decimal fraction, but need not

include the decimal if it is a whole number. This is in contrast to the entries in the UDAT files, where decimal fractions are implied by the for mats. The block area and the coordinate values are entered to the nearest whole unit and must not contain a decimal point.

All individual entries for operatives must be followed by a comma (",") unless specifically noted (see "H" and "A" instructions) or unless the operative is the last one in a record. Instruction OPcodes are never directly followed by a comma, even if one instruction operater code is immediately followed by another with no intervening operative(s).

Figure 7.3 is a summary of UCON instructions and lists the primary OPcode for each instruction, the general type of secondary OPcode, the number and type of operatives, and the usage of the instruction. The secondary OPcodes vary, depending on the primary OPcode. Where an OPcode2 is applicable, it is shown as "n" or "a"; if entirely nonfunctional, it is shown as the symbol "#". The description under "usage" states if the operator code must begin in column one of a record. The secondary OPcodes and the operatives are described in detail in Sections 7.4 through 7.7.

The "B" instruction defines a BCM; the "F" instruction defines an FCM.

The "E", "L", "Q", "W", "A", "H", and "C" instructions are contained within a given file control module and apply to the file name entered in the FCM identifier record. They are termed "edit" instructions.

Examples, from Figure 7.3:

{B B#; i=0 or 1 (A=3); Q=yes, C=yes } designates that "B" is the OP codel used to establish a block control module; the OPcode2 is nonfunctional; there may be either no operative or one operative, and if there is an operative it consists of exactly 3 characters; the operative (if present) must be enclosed in (single) quotes and must be followed by a comma.

{ E En= 1,2,3,4,N; i=0 or 2 (N <= 7); D=yes(1)*, C=yes } designates that "E" is the OPcodel for edit by elevation and/or position with respect to an open pit; the OPcode2 may be a single digit number from 1 through 4 or an "N"; there may be either no operatives or 2 operatives following the operator code; if there are (two) operatives, and they consist of up to 7 numeric digits (including a decimal, if present); a decimal is allowed with one digit to the right of the decimal (*unless otherwise noted in the text); the operatives must be separated by commas from themselves and from any succeeding instruction operator code in the same record.

{ A Aa= +,-,b,N; i<=26/rec (A=3), max. rec.=1; Q=no,C=no } designates that "A" is the OPcodel for edit by sample set area number; the OP code2 may be the characters "+", "-" (negative sign), blank, or "N"; there may up to 26 operatives per record, each operative consisting of exactly 3 characters; a maximum of one record is allowed; operatives are not enclosed by quotes, and no commas are used as separators.

THE UCON SYSTEM

7.4 INSTRUCTIONS CONTAINED IN THE BCM (BLOCK) IDENTIFIER RECORD

7.4.1 The "B" Instruction

The "B" instruction ("B#") denotes a BCM (block) identifier record; the OPcode2 is always "#". The "B" must always be entered in Column 1 (and of course the "#" in column 2). The operative is a 3-character block identification code, or simply "block code"; examples: 'A4', 'FGT', 'Cl4'. The block code is always encased by (single) quotes, and must be followed by a comma (',') if an area or block name instruction follows. If the block code is omitted in a BCM identifier record in a UCON file used for an ore re serve RUN, then a block code, simply containing the sequence position of the given block, is automatically generated. If a block code is included in UCON file used for a URDAT RUN, it will be ignored.

7.4.2 The ">" Instruction

The ">" instruction (">#") may only be ent ed in the BCM identifier record, following the block code operative. It denotes the block area. The OPcode2 is always "#".

The ">#" operator must be followed by an operative, which is a numeric value of up to 10 digits representing the area of the block, to the nearest square foot. Example "># 5000", "># 888000"; no decimal is required; it cannot have a zero or negative value. The operative must be followed by a comma if the ">" instruction is succeeded by a "!" instruction.

The block area instruction OPcode and operative must be present in every BCM identifier record if the UCON file is used with an ore reserve program. For UCON files which will be used by program URDAT, the ">" instruction is not needed. If present, it will be ignored.

7.4.3 The "!" Instruction

The "!" instruction ("!#") may only be on the BCM identifier record. It immediately follows the block area instruction, if the latter is present. Otherwise it follows the BCM identifier instruction. "!" denotes a block name; the OPcode is always "#". The operative is a name assigned to the block and may consist of up to 74 characters. It must be encased in single quotes.

The "!" instruction is optional for programs RESUV, ORSAC, and SCOR; if not entered, a name will be created for the given block. When running program URDAT, however, if the block name is missing, an interactive request will be made to supply a block name, since: 1) it is the only way of identifying the run on output listings, and; 2) it will be used as a file identication on the first record of an intermediate file, if such a file is created. Lack of this identification will not stop program execution, but will make it difficult to identify the output and/or intermediate file at a later date.

Since the block name instruction ("!#") is always the last operative on the BCM identifier record, it is never followed by a comma.

7.4.4 Summary of Usage of the BCM Identifier Record

The first record of any UCON file will be a BCM Identifier Record with a "B#" entered in columns 1 and 2.

If the UCON file is used for a URDAT RUN, there will only be one BCM identifier record in the file and the record need not contain any block code operative or area instruction. If the UCON file is used for an ore reserve program, there may be more than one BCM identifiier record in the file and each must contain an area instruction following the "B#" instruction. "!" instructions may optionally follow either the ">" instruction, or the "B" instruction, if the ">" instruction, or the "B" instruction, if the ">" instruction is not present. Figure 7.4A shows the following examples of block identifier records.

Ex.1. Block code is "G2 ", block area is 7000 square feet, name is 'Example 1, Block Identifier Record'.

Ex.2. Block code is "A2", block area is 777,777 square feet, block name instruction omitted.

Ex.3. Block code omitted, block area is 70,007 square feet, block name is 'example 3, Block Identifier Record'.

Ex.4. Block code is absent, block area instruction omitted, block name is 'Example 4, Block Identifier Record'.

Ex.5. Block code is "A4", block area instruction omitted, block name instruction omitted.

Examples 4 and 5 would only apply to UCON Files used for URDAT RUNS, since there is no ">" instruction; the block code in example 5 would be ignored.

The last record of a BCM must be block terminator record unless superceded by a (UCON) RUN terminator record.

7.5 INSTRUCTIONS CONTAINED IN THE FCM (FILE) IDENTIFIER RECORD

7.5.1 The "F" Instruction

The "F" instruction denotes an FCM identifier record which specifies the name of the UDAT file from which sample data will be extracted; the OPcode2 is "#". The "F" must always be entered in column 1. The operative is a DOS file name, consisting of up to 14 characters, which must be enclosed in single quotes. Some examples are: 'filename', 'filename.xxx', 'A:filename.xxx'. DOS path reference names are not permitted for URAD files.

The file name must reference a UDAT sample assay file. If URDAT is being run, then the file must be of the primary (basic) type. If the reserves programs are being run, the file must be of the intermediate type. If the device name (i.e. 'A:', 'B:', etc.) is used, the program will assume that the file is in the root directory of the disk on the designated drive. If not, the program will assume that the file is in the current working directory of the disk on the default drive (Section 2.2.2).

7.5.2 Other Instructions on the FCM Identifier Record

"E", "L", "W", and /or "Q" instructions (see below) may also be included on an FCM identifier record, if space allows. If such are included, the file name operative must be followed by a comma.

7.5.3 Summary of Usage of the FCM Identifier Record

A BCM identifier record must always be followed by an FCM identifier record. If multiple files are to be processed for a block, then additional FCM identifier records will be included within the BCM. The file name is crucial in identifying the data which will be processed.

An FCM identifier record is the first record of a file control module and always has "F#" in columns 1 and 2. Figure 7.4B illustrates some examples of FCM identifier records:

Ex.1. File 'STARDAT' is the UDAT file requested and is assumed to be on the current working directory of the default disk drive.

Ex.2. File 'STARDAT.B' is the UDAT file requested and is assumed to be on the default drive as above.

Ex.3. File 'GAMDAT' is the UDAT file requested and is assumed to be in the root directory of the floppy disk on the 'A' drive. Some edit instructions are also entered in this record.

The last record of an FCM must be an FCM terminator record unless superceded by a BCM or RUN terminator record.

7.6 EDIT INSTRUCTIONS WITHIN A FILE CONTROL MODULE

7.6.1 General Characterisics

The instructions described in this section are all used for editing or correction of sample data. They are all optional and are only included within a file control module as needed.

The "E", "L", "W", and "Q" instructions all affect editing or correction of samples within sample sets. More than one of these may be included on the same record, including an FCM identifier record (see example 3, Figure 7.4B. However, whenever one of these instructions is the first instruction of a record, it must start in column 1 of the record. "E", "L", "W", or "Q" instructions may not be entered on the same record as "C", "A", or "H" instructions.

The "C", "A", and "H" OPcodes must always begin in column 1 of a record, and no other instructions may appear on that record. These instructions apply to entire sample sets and determine whether an entire set is to be included or rejected during the processing of a file.

There is no specific order of entry of these instructions within a file control module, except that if two "Q" instruction are contained within one

FCM, the first is assumed to apply to samples in the "non-oxidized zone" and the second for samples in the "oxidized zone".

A FCM may simply consist of an FCM identifier record -- containing only the "F#" OPcode and file name -- and an FCM terminator record; no edit instructions are required if not applicable. On the other hand, an FCM may include any combination of the edit instructions, except that the "E" and "L" instructions cannot be both be in effect during the processing of a given file.

During the processing of the sample sets, there is a hierachy of editing instructions as described in Section 7.6.10.

> i. F

7.6.2 Carry-over or Negation of Edit Instructions

The following "carry-over or negation" rules apply to all the UCON edit instructions but not to the "B", "F", ">", "!" or "*" (terminator) instructions. If more than one FCM is contained within a given BCM, the edit instructions in one FMC will carry over into (i.e. remain in effect for) the following FCM within the same BCM unless they are negated in a succeeding FCM(s) or new, similar instructions are provided in the succeeding FCM(s).

However, instructions do not carry over from one BCM to the next. Each new BCM automatically cancels all instructions from a previous BCM, and the first FCM of each BCM must contain a fresh set of instructions.

Any of the edit instructions in an FCM having an OPcode2 of "N", will cancel (or "negate) any similar instruction, i.e. an instruction having the same OPcodel, in a preceding FCM within the same BCM will be negated.

Examples:

1. If the first FCM in a BCM contains an "E1" instruction, and the second FCM within the same block contains an "EN" instruction, then, after the first file is processed, the original "E1" instruction will be cancelled and there will be no E-edit in effect while processing the second file; other instructions will not be affected.

2. If the second FCM contains no "E" instruction, then the original "E1" instruction in the first FCM will remain in effect while the second file is being processed. If the second FCM contains, say, an "E2" instruction, the latter will supercede the original "E1" during processing of the second file. An entry, in the second FCM, of "E1" with different operatives will cause the new operatives to be in effect while the second file is being processed.

Notes: Any instruction having an OPcode2 of "N" should never be followed by any operatives, nor should it follow a similar instruction within the same FCM.

Any new edit instruction entered in a given FCM automatically cancels a similar instruction in a preceding FCM (within the same BCM) and in this situation, a negation OPcode must not be used. The "N" OPcode2 does not apply to, and must not be used with, the "B", ">", "!", "F", or "*" instructions.

If an FCM contains an "E" instruction, and a succeeding FCM within the same BCM contains an "L" instruction, the previous "E" instruction will be automatically cancelled (and vice versa).

7.6.3 The "E" Instruction

The "E" instruction is used to edit samples within sample sets according to their elevation and/or with respect to the bottom of an open pit (if such exists). The OPcode2 determines the type of edit and may be "1", "2", "3", "4", (or "N"). There is either no operative or 2 operatives (see below). If entered, the operatives define, respectively, an upper limiting elevation ("TOPEL") and a lower limiting elevation ("BOTEL"). Elevation values are in feet and may be up to 7 significant digits, including a decimal point, if applicable. (Remember that the elevations in the original sample sets are entered to the nearest 10th of a foot.)

Negative elevations are allowed. All elevations used in the elevation edit controls must refer to the same datum elevation as those in the sample sets which are subject to the given edit.

The carry-over and negation rules (Section 7.6.4) apply.

A non-zero entry for TOPEL will cause all samples above TOPEL to be ignored; a zero entry will establish the collar elevation of each sample set as the upper limit. A non-zero entry for BOTEL will cause all samples below BOTEL to be ignored; a zero entry will set the bottom depth sampled as the lower limit. These limits may be further modified if edits "2", "3", or "4" (be low) are used.

The operatives must either both be entered, or both omitted, if they are both omitted, their value is assumed to be zero. If they are entered, TOPEL is always first. If one or the other is not applicable, it must be entered as zero. For this reason an actual limiting elevation of 0 feet (with respect to the datum plane) cannot be entered; it must be entered as a positive number less than 0.1 feet (Example: 0.01 or 0.001).

Notes: The "E" instruction cannot be used in conjunction with the "L" instruction (Section 7.6.4) within any given file control module.

The "E" instruction with an OPcode greater than "1" cannot be used with programs RESUV, ORSAC, or the underground option of SCOR.

The significance of the secondary OPcodes is as follows:

7.6.3.1 OPcode2 = "1"

The edit is by elevation control only and depends on TOPEL and BOTEL. If both TOPEL and BOTEL are non-zero, only samples between these two elevations will be submitted to the calling program. If TOPEL = 0, then the upper limit will be the collar elevation of the sample set. If BOTEL = 0, the lower limit will be the bottom depth sampled. If both are zero, then, of course,

THE UCON SYSTEM

no editing will effectively take place at all. This edit is not affected by the presence of entries for pit-bottom in the sample sets.

7.6.3.2 OPcode2 = "2"

Only sample sets lying within a pit (i.e., sample sets having a pit-bottom depth ("PITBT") entered in their header records) will be accepted; all others will be completely rejected from the file. For those accepted, only samples lying below the PITBT will be included. If TOPEL and BOTEL are entered as operatives, TOPEL will be ignored, if it lies above the PITBT.

7.6.3.3 OPcode2 = "3"

Only sample sets having a PITBT entry will be accepted and furthermore, only samples above the PITBT will be accepted. If TOPEL and BOTEL are entered as operatives, BOTEL will be ignored if it lies below the PITBT.

7.6.3.4 OPcode2 = "4"

All hole sample sets are accepted. However, for any sample set containing an entry for PITBT, only those samples lying below the PITBT will be accepted; and, if the operatives are included TOPEL will be ignored if it lies above the PITBT. For those sample sets not having a PITBT entry, TOPEL and BOTEL will be applied as described for an secondary OPcode of "1".

Note: There are two important factors to remember with respect to entries for PITBT in the primary (basic) UDAT files:

1. In the processing of the sample sets during a SCOR open pit RUN, if no "E" edit is in effect, the procedure described above for an OPcode2 of "4" is automatically implemented since it is assumed that all material above the PITEL has been removed. An "E1" instruction, with or without operatives, must be used override this condition.

2. The "E" pit-bottom control edits (secondary OPcodes = 2, 3, or 4) will only be recognized when running the SCOR program for open pit analysis. When RUNs are made on RESUV, ORSAC, or SCOR-underground- option, the PITBT entries, or edits pertaining to them, are completely ignored!

Examples of entry for the "E" instruction are shown in Figure 7.4C.

Ex.1. Select only sample sets which have a non-blank entry for PITBT (depth to pit bottom); select only samples below the PITBT and above 200 feet in depth.

Ex.2. Cancel any previous "E" instruction within the given BCM.

7.6.4 The "L" Instruction

The "L" instruction is used to edit data on the basis of lithologic information associated with the sample sets, as described in Section 6.4. It provides the most versatile method of isolating mineralized zones within a deposit. The secondary OPcodes are "#" and "N". The carry-over and negation rules (Section 7.6.4) apply.

The "L" instruction cannot, however, be used in conjunction with the "E" edit instruction within a block control module; in effect, the L-edit, it-self, establishes the upper and lower bundaries for sample selection. Sample set entries for PITBT are ignored when the L-edit is in effect.

The operatives are the 4-character lithologic codes for an "upper lithologic unit" ("TLTH") and a lower lithologic unit ("BLTH") within the range of which samples will be selected. The lithologic codes for TLTH and BLTH must always both be present, and each must be encased in single quotes (' ') and separated by a comma. TLTH cannot be a unit which is lower than BLTH in the established "lithologic sequence" (Section 6.4).

This edit is extremely useful in separating ore zones on the basis of attitude or lithologic environment. It is most useful in bedded deposits but can also be used to represent selected zones in other deposits, providing that some forethought has been given to this when establishing the primary (basic) UDAT data bases. It is especially useful in statistical analysis of a deposit when it may be desired to run an analysis of (likely) individual sample populations which include only portions of the total samples in the sample sets.

The edit assumes that specific lithologic (or psuedo-lithologic) intervals have been designated and entered in the "L" format with each of the applicable sample sets. TLTH and BLTH are 4-character codes chosen from the total list of lithologic codes entered with the sample sets.

The preparation of the "L" format records is described in Section 6.4. To review: the 4-character alphanumeric code for each lithologic unit is entered along with the corresponding "top pick', i.e. the depth from the collar elevation of the sample set to the top of the given lithologic unit. The unit code/depth entries are made in order of increasing distance from the point indicated by the collar elevation.

The depths are all positive numbers, except that:

1. For the lithologic unit in which the sample set is "collared" (i.e. in which the top of the sample set is positioned) the depth is entered as zero.

2. Lithologic units with the flag "-1" (Section 6.4) in their corresponding depth entries are considered to be missing (absent) above or within the total interval represented by the sample set. Lithologic units with the flag "-2" in their corresponding depth entries denote units assumed to lie below the lowest recognized lithologic unit present in the interval represented by the given sample set.

Once a total sequence of lithologic units has been selected as being significant for the region which includes the deposit(s) under evaluation, the "L" records in each sample set must include entries for every lithologic unit included in the total sequence. When the lithologic edit is in effect, and a unit represented by either TLTH or BLTH is not found, then the entire sample set is rejected.

THE UCON SYSTEM

The edit is simple. As each sample set is processed, the TLTH operative is compared to all the lithologic unit codes in the sample set list and, if a match is made, the depth corresponding to the matched unit becomes the top limiting depth; all samples above that point are excluded. The BLTH is similary compared, and if a match is made, the depth of the unit succeeding the matched unit becomes the bottom limiting depth and all samples below that depth are excluded.

If sample selection is desired from one particular unit only, then the code for that unit is entered both for TLTH and BLTH. Whenever either of the limits "splits" an integral sample, only the portion within the limits is accepted. Example: if there is a sample of 5 feet @ 0.20% U308 lying in the elevation range of 2005 - 2000 feet, and the TLTH is determined at 2002 feet, only 2 feet @ 0.20%U308 will be included as an "accepted" sample.

The following operations also take place during the matching process:

1. Whenever a BTLH edit operative represents the last (lowest) unit recognized within a sampled interval, whether the very last unit of the entire sequence or the last to contain a positive depth entry), the bottom-depth-sampled automatically becomes the lower limiting elevation.

2. Whenever a BLTH edit operative is matched to a sample set unit which lies below the bottom depth sampled for the given set, the bottom depth sampled automatically becomes the lower limiting depth.

3. Whenever a TLTH or BLTH edit operative is matched with a corresponding (sample set) unit which has a depth entry of "-1" (missing), the depth of the first succeeding unit which contains a positive depth value becomes the upper (or lower) limiting depth. If all units are missing in the range specified by TLTH and BLTH, then the interval is automatically considered "barren".

The following examples of the "L" instruction are shown on Figure 7.4D; Figures 6.3 and 6.4 may be used as references.

Ex.1. TLTH and BLTH are entered as 'JMU1' and 'JML2' respectively. For Hole # HYP1, the top and bottom limiting depths would be 90' (7280 minus 7190) and 310' (7280 minus 6970), respectively. For Hole HYP2, they would be 190' and 420'.

Ex.2. TLTH and BLTH are 'JML2' and 'JML1'. For Hole HYP1, the top and bottom limits would be 170' and 390' (depth to bottom of the hole). For Hole HYP3, the limits would be 340' and 470' (the hole bottom).

Ex.3. TLTH and BLTH are 'JMC ' and 'JMC ' (same unit). For Hole HYP1, the limits would be 150' and 170'. Hole HYP2 would be considered "barren" since the unit is not present.

Ex.4. TLTH and BLTH are 'JSMV' and 'JTDL'. For Hole HYP2, the limits would be 500' and 580'. Holes HYP1 and HYP3 would be considered barren since both units are either missing or presumably lie below the bottom of these holes. Ex.5. TLTH and BLTH are 'KMC ' and 'KBC '. For Hole HYP1, the limits would be 0' and 90'; unit 'KMC ' is missing and the hole is collared in unit 'KBC '.

Ex.6. TLTH and BLTH are 'JMC ' and 'JML2'. For Hole HYP3, the limits would be 300' and 470'. For Hole HYP2, they would be 260' (top of unit 'JML2" since unit 'JMC ' is missing), and 420'.

The characters making up the lithologic code (including blocks) must exactly match those in the data, or the hole is rejected entirely. For example: 'JMC' would not match 'JMC'. For this reason it is wise to use 4 character combinations for lithologic codes rather than using one or more blanks. This has not been done in the examples expressly for illustrative purposes!

If the L-edit is in effect for a run, and there are no lithologic data (L-records) associated with a sample set, the entire set is rejected.

Test file "STARDATL" (Section 4.1) may be used to test the effects of the "L" instruction.

7.6.5 The "W" Instruction

The "W" instruction is used to edit samples by their position relative to the depth to oxidized/non-oxidized contact (Section 5.2.5). The secondary OPcode is either "1" or "2". If "1", only samples below the contact will be selected. If "2" only samples above the contact will be selected. A "WN" operator negates any previous "W" instruction within a block control module.

If sample sets have no entry for "depth-to-oxidized/non-oxidized contact", then the depth will be assumed to 0, indicating that all samples are assumed to lie below the contact. An operator code of "W2" will eliminate all such samples. Therefore this instruction must be used with care. There is no operative required with the "W" instruction. Example 2, Figure 7.48, shows the entry of the "W" instruction with an OPcode2 of "2". 7.6.6 The "Q" Instruction The "Q" instruction is used for correcting radiometric assays for disequilibrium. The OPcode2 is "1", "2", or "N". Operatives are numeric values which may contain up to 6 significant digits, including a decimal point. These values are the coefficients used in the "correction" equation (Section 3.4) designated by the OPcode2. Two functions are used:

1. If OPcode2 is 1, the equation is a polynomial of the form:

y = A + BX + CX **2 + DX **3 + EX **4

where,

X is the radiometric grade, and Y is the corrected grade,

and the operatives are the coefficients A, B, C, D, and E.

The degree of the equation is implicity denoted by the number of coefficients (operatives) following the instruction code. If 2 coefficients are entered, the degree of the polynomial is 1, etc. The operatives are entered in the sequence -- A, B, etc. Any zero coefficient of lesser rank then the last non-zero coefficient entered must be en tered.

Example: if the equation is

Y = 1.3X + 0.04X**3,

then the operatives must be "0", "1.3", "0", and ".04" (See Example 1, Figure. 7.4E)

2. If OPcode2 = "2", the equation is a logarithmic function of the form:

 $LOGeY = A + B \times LOGeX$

Only 2 operatives, i.e. the "A" and "B" coefficients, are required. If "A" is zero, it must be entered as "O". Example 2, Figure 7.4E, shows the coefficients entered for the equation:

 $LOGeY = 0.188 + 0.994 \times LOGeX$

The form and coefficents of the equations must be previously determined by statistical analysis of the applicable sample assay data (Section 3.4)

Two "Q" instructions are permitted in one FCM (example 3, Figure 7.4E). If only one "Q" instruction (and associated operatives) is entered in a given FCM, it will apply to all samples of a sample set. If two "Q" instructions are entered, the first will be applied to all sample assays assumed to be in a "non-oxidized" environment, and the second to all those in an "oxidized" environment. The value for "depth to oxidized/non-oxidized" contact in sample set header records will determine the position of the individual samples with respect to that contact.

Remember that if the entry for depth-to- ox./non-ox.-contact is entered as 0 (or left blank) in a header record, it is assumed that all samples represented by that record lie in the unoxidixed environment.

If corrections are to be made only to samples in the oxidized zone, then a "dummy" "Q" instruction must be entered, first, for the non-oxidized zone. Example: "Q1 0,1", where "Y = 0 + X" is assumed. This "correction" will be made to samples in the unoxized xone, but, of course, no change in value will result.

The carry-over and negation rules (Section 7.6.2) apply.

Note: If two "Q" instructions are entered in an FCM, a "QN" instruction OPcode in a following FCM in the same BCM will negate both previous instructions; a single "Q" instruction in a following FCM also negates both previous instructions and establishes a new correction equation which will be applied to all samples.

7.6.6 The "D" Instruction

Note: this instruction is not operative in this first version of the Guide

A "D" instruction causes all the sample sets processed by one block control module to be checked for duplicate hole number. This option results in longer running time and need only be utilized if there is concern that duplicate hole numbers exist. It would normally be utilized in running URDAT, after which, if duplicate numbers did, in fact, exist, they would be corrected in the primary (basic) data files before any secondary files were created.

7.6.7 The "H" Instruction

The H-edit, used alone or in conjunction with the A-edit and/or the C-edit (below), is used for deleting entire sample sets during the processing of a file. Use of the H-edit saves considerable time and effort which might otherwise be expended in the original selection and manipulation of the sample data to be included both in primary (basic) and secondary UDAT files.

The "H" instruction provides edit by the sample set identification codes (called "hole numbers", Section 5.1.1) which appear in columns 7 through 12 of every sample set record in the UDAT files. The "H" operator must be entered in column 1 of a UCON record. The secondary OPcodes are "+", "-", blank or "N". The operatives consist of a list of up to thirteen 6-character hole numbers.

Following an "H+" or "H-" OPcode, is a list of hole numbers. Each hole number must be exactly 6 characters in length, including blanks, so that they will correcpond exactly to the 6-character hole numbers entered in the sample set drill hole records. In order to be functional, the characters (including blanks) must be exactly equal to the corresponding hole number, in the sample set record, to which the edit is directed. Otherwise, no match can be made during a run and the entry is useless.

The hole numbers must be entered contiguously; they cannot be separated by blanks or commas nor can they be encased in quotes.

An OPcode2 of "+" will cause only those sample sets having a hole number which matches one of the numbers listed in the ""H" instruction record to be included when processing the file named in the FCM identification record; all others will be rejected. An OPcode2 of "-" acts in reverse, i.e. a sample set having a hole number matching one on the "H" record list will be rejected; all others will be included.

The first character of the first hole number of the list is entered in column 3 and the last character in column 8; the first character of the 2nd hole number must be in column 9 an the last in column 14; and so forth. Thirteen hole numbers may be entered in an "H" (instruction) record. If there are more than 13 numbers to be entered then additional "H" records are used.

If there more than one "H" record is required within one file control module, each additional record must still contain the "H" instruction OPcode(s)

THE UCON SYSTEM

in columns 1 and 2. The secondary OPcode of the first "H" record must be "+" or "-". Any following "H" record may have a blank as OPcode2 or the OPcode2 may be the same as that in the first "H" record. But they cannot be mixed "-" and "+" since only one of the options (not both) can be in effect while processing a given file.

Blank entries for hole numbers at the end of the last "H" (instruction) record of the FCM will be ignored but other, "embedded", blank hole numbers (all 6-character blank) will be included. Since blank hole numbers are not recommended as sample set identifiers, it is not likely that blank hole numbers in the "H" lists would have any effect on the edits. Nevertheless, before adding additional "H" records, it is practical to fill each "H" record with 13 hole numbers, unless there are not enough hole numbers to fill the last "H" record in the FCM. The maximum number of hole numbers is 299, or 23 records of 13 hole number operatives per record.

Figure 7.5A shows an example of an "H" instruction which specifies the inclusion of the first 27 holes from UDAT file 'STARDAT'. In Figure 7.5B, the H-edit excludes the same holes.

The rules of carry-over and negation (Section 7.6.2) apply; an OPcode2 of "N" will negate an entire H-edit established in a previous FCM within the same BCM.

No other instructions may be entered in an "H" instruction record.

7.6.8 The "A" Instruction

The "A" instruction operates exactly as does the "H" instruction, except that it is used to edit sample sets based on the area number (Section 5.1.2) instead of the hole number. Following a "A+" or "A-" instruction OPcode is a list of sample set area numbers. Each area number must be exactly 3 characters in length, including blanks, so that it will correspond exactly to the area number entered in column 4-6 of the sample set records in the UDAT files.

The first character of the first area number of the "A" instruction list must be entered in column 3 and the last in column 5; the first character of the second area number must be in column 6 and the last character in column 8; and so forth. The maximum number of area numbers is 26 and only one record is allowed. Example 1, Figure 7.5C shows an "A" instruction that specifies the inclusion of all sample sets from UDAT file 'STARDAT' which have the area numbers 'AAA' or 'CCC'. The "A" instruction in Example 2 would exclude all sample sets having area numbers 'AAA' or 'BBB'.

The rules of carry-over and negation (Section 7.6.2) apply; an OPcode2 of "N" will negate an entire previous A-edit.

No other instructions may be entered in a "A" instruction record.

7.6.9 The "C" Instruction

The C-edit is the most powerful of the sample set inclusion/exclusion edits. It provides the identification of sample sets on the basis of their coordi-

nate relationship to a specified polygon. The polygon may have up to 20 vertices and may be of any degree of irregularity providing that it is "closed" and no sides intersect any other sides. The vertices of the polygon must be referenced by the same coordinate system as the sample set data to which the C-edit will be applied.

The operatives following a "C+" or "C-" operator comprise a list of coordinates pairs, each pair representing one vertex of the polygon enclosing the area from which sample sets are to be included ("C+") or excluded ("C-") if they lie within the specified polygon. Any sample set lying exactly on the perimeter of the polygon is considered to be "outside" the polygon. A single coordinate value is considered as one operative.

The pairs (north coordinate first and east coordinate second) must be entered in clockwise sequence of vertices; any vertex may be chosen as the starting point. No vertex should be repeated, i.e. the number of pairs entered must exactly match the number of vertices (the starting point (vertex) must not be entered twice). The value of the coordinate may not exceed 7 digits (MV = 9999999); coordinates must be entered to the nearest foot, and no decimals are allowed. A maximum of 4 coordinate pairs are entered per "C" instruction record and each record must contain 4 coordinate pairs except the last record - if it cannot be filled.

The format is flexible except that columns 1 and 2 are reserved for the instruction OPcodes. Each value (operative)must be immediately followed by a comma, but leading blanks are ignored. The coordinate values, of course, may not contain any imbedded blanks. Since the polygon is limited to 20 vertices -- 20 coordinate pairs -- the maximum number of instruction records is 5. Zero values may be entered for coordinates, but the last pair entered must not be (0,0); if so, it will be ignored. Coordinates must all be posi tive (no negative values.).

Figure 7.5D is an example of C-edit instructions which would cause inclusion of all holes in the 'STARDAT' data file which lie within the polygon outlined on the drill hole location map on Figure 7.6. The vertices of the polygon are numbered and circled on the map and their coordinates (in feet) are listed as follows:

Vertex Number	North Coordinate	East Coordinate
1	700	1500
2	1100	1500
3	1100	1700
4	1 300	1700
5	1300	1100
6	1700	1100
7	1700	1800
8	2400	1150
9	3100	1700
10	3100	3050
11	2600	2650
12	2200	3050
13	1700	2600
14	1700	2100
15	1300	2100
16	1 300	1900
17	700	1900

If the instruction in the first C-edit record was "C-" instead of "C+", only the holes outside the polygon would be included.

The rules of carry-over/negation (Section 7.6.2) apply; an OPcode2 of "N" will negate an entire C-edit in a previous FCM within the same BCM. No other instructions may be entered in a "C" instruction record.

7.6.10 Hierarchy of Edit Operations

The order in which the edits specified in a file control module take place during program execution is listed below.

- C-edit.
 A-edit.
- 3. H-edit.
- 4. Q-corr.
- 5. L-edit or E-edit.
- 6. W-edit.

This order is especially important to keep in mind when planning sample set selection ("C", "A", and "H" edits). If the C-edit is in effect, A- or H-edits will only be performed on the sample sets which meet the C-edit requirement (inside or outside the polygon). If the A-edit is in effect, only sample sets which meet A-edit specifications will be subject to any H-edit requirements. Example: if a sample set is designated for inclusion by an H-edit specification, but has an area number which is designated for exclusion by a A-edit specification, the sample set will be excluded.

86

7.7 THE "*" TERMINATOR RECORDS

The "*" instruction is entered in terminator records used to signal the end of integral modules of a UCON file. The "*" must always be in column 1 of the record. The secondary OPcodes are:

Blank for the end of a file control module (FCM). "B" for the end of a block control module (BCM). "*" for the end of a RUN (which is also the end of the UCON file).

The FCM terminator record for the last FCM in a block control module must always be omitted (Figure 7.2), and the BCM terminator for the last BCM in a RUN must always be omitted (Figure 7.2).

The "*" is the only instruction recognized on a terminator record.

7.8 SUMMARY EXAMPLE

Figure 7.7 shows a test UCON file, called "UCON2", designed to show various combinations of the UCON instructions described above. These instructions are used strictly for illustrative purposes and it is not suggested that they have any practical application.

"UCON1" is established for a URDAT RUN. It consists of one block control module (BCM) which contains three file control modules (FCMs); the requested files are primary UDAT test files.

The first FCM requests file STARDAT and calls for the E-edit, the Q- edit, the C-edit, the A-edit and the H-edit; the second FCM requests file STARDATL (a small file in which hypothetical lithologic data have been added to selected STARDAT sample sets); and the third FCM requests data from file GAMDAT.

The first FCM excludes all holes outside the polygon used as the example in Section 7.6.10, as well as those holes within the polygon which are included in file STARDATL. It corrects the radiometric assays, from included holes, for disequilibrium, and then limits accepted samples from each sample set to an elevation range of 1770' down to 1750'.

The second FCM includes all holes in file STARDATL which lie within the polygon except for 2 holes by cancelling the A-edit and restating the H-edit. It does not correct for disequilibrium (the Q-edit in the first FCM is cancelled) and cancels the previous E-edit with an L-edit which selects samples, from each included sample set, which occur in lithologic units 'JMU1' and 'JMC'.

The third FCM cancels all previous edits and processes all the holes in file GAMDAT. It also contains two Q-edits which act to correct all assays above the oxidized/non-oxidized contact for disequilibrium, but leave assays below the contact uncorrected.

THE UCON SYSTEM

FIGURE 7.1 GENERAL STRUCTURE OF A UCON FILE FOR ONE BLOCK

.

("IC" = "edit instruction code") Column 1 / Column 2 11 B# - - - 1st block control (module) identifier record Ft - - - - 1st file control (module) identifier record (of block 1) 10 - - - - - - 31 edit-instruction records } IC - - - - - - - j # ---- 1st file control (module) terminator record F# - - - - 2nd file control ID record (of block 1) IC - - - - - -) edit-instruction record # - - - - 2nd file control terminator record F# - - - - - 3rd file control ID record (of block 1) IC - - - - - - > edit-instruction record #B - - - ist block control (module) terminator record, (also terminates 3rd file control module) B# - - - 2nd block control ID record F# - - - - 1st file control ID record (of block 2) #B - - - 2nd block control terminator record, (also terminates file control module) B# - - - 3rd block control ID record F# - - - - 1st file control ID record (of block 3) IC - - - - - -) edit-instruction record ż. 1st file control terminator record F# - - - - 2nd file control ID record (of block 3) IC - - - - - - } edit-instruction records / IC - - - - - - - - 3

FIGURE 7.2 GENERAL STRUCTURE OF A UCON FILE FOR MULTIPLE BLOCKS

89

Primary JPcode	Primary 4 Secondary OPcodes‡	Number and Type of Operatives‡‡		Usage
B	 B#	1=0 or 1 ('A' =3)	Q=yes C=yes	BCM (block) identifier (must begin in column 1 of record)
>) #	1=1 (N 1 10)	D=na C=yes	block area (follows "B" instruction)
I	2.	1=1 (°A² ≤ 74)	Q=yes C=no	block name (follows ">" instruction/
F	FR	1=1 ('A' ≤ 15)	Q=yes C=yes	file control (column 1)
L	La = ≢, or N	1=2 ('A' = 4)	9=yes C=yes	lithologic edit
Ε	En = 1,2,3,4,	N 1=0 or 2 (N 1 7)	D=yes(1) ‡‡‡ C=yes	elevation (or open pit) edit
¥	Wn = 1,2,N	1=0		oxidized / non-oxidized contact edit
9	9n = 1,2, or N	1=1-5 (N i 6)	D=yes(5) C=yes	disequilibrium correction(s)
C	Ca = +,-,b,N	1 18/rec (N 1 7) _ max. rec. = 5	D=na C=yes	sample set coordinate edit (must begin in column 1)
A	Aa = +,-,b,N	1 (26/rec (A = 3) aax. rec. = 1		sample set area number edit (must begin in column 1)
Н	Ha = +,-,b,N	1 113/rec (A = 6) Bax. rec. = 5		sample set hole number edit (must begin in column 1)
ţ	\$a = b,3,\$ \$ \$9 \$1			terainator (column 1), where: is file terminator is block terminator is RUN terminator
t For	secondary OPcode	s: "n" is numeric a "a" is character "#" is non-funct	and allowabl	e torms are shown; "b" = blank.
tt For	*A	* is the number of - " or "N" is number o 1" indicates maximum	f characters	or numeric digits (including decimal, if applicat ndicates exact number of characters.
	• ((number in parens eyes or no [®] indicate eves or no [®] indicate	is number of s whether alp s whether com	eric operative can be a decimal fraction. places to right of decimal) hanumeric operative must be encasesd in quotes. mas must separate operatives from themselves instructions on the same record.
	و ت	ax, rec* indicate		ber of records allowed for multi-record instructs

See documentation text.

FIGURE 7.3 SUMMARY OF UCON INSTRUCTIONS

```
- Record Format ;
```

column numoers	;	1111111112222222222233333334444444445555555555
	2	18# '52 ', ># 7000, !# ' EXAMPLE 1, BLOCK IDENTIFIER RECORD.' 18#'A2 ', #777777 18# `# 70007, '#' EXAMPLE 3, BLOCK IDENTIFIER RECORD.'
		188'# ' EXAMPLE 4, BLOCK IDENTIFIER RECORD.' 18# 'A4 '

FIGURE 7.4A. Examples Of UCON Block (BCM) Identifier Records.

r Record Forsat

column ; 111111111222222222233333333344444444445555555555
Example 1 F# `STARDAT' 2 F# 'A:STARDAT.B' 3 F#'SAMDAT'.E1 5000.5000, Q1 .01,1.4, W2

FIGURE 7.48. Examples Of UCON File (FCM) Identifier Records.

r Record Format 1

column numbers `	111111111122222222233333333334444444445555555555
Example 1	E2 0, 200
2	EN

FIGURE 7.4C. Examples Of The UCON "E" Instruction.

F Record Format 1

column numbers >	i 111111111122222222223333333334444444445555555555
4	L# 'JHU1','JHL2' L# 'JHC', 'JHL1' L# 'JHC', 'JHC' L# 'JSHV', 'JTDL' L# 'KHC', 'KBC' L# 'KHC', 'KBC'

FIGURE 7.4D. Examples Of The UCON "L" Instruction.

r Record Format 1

column numbers >	1111111111222222222333333334444444445555555555
2	91 0, 1.3, 0, .04 92 .188, .994 92 .188994, 9101, 1.5,06

FIGURE 7.4E. Examples Of The UCON "Q" Instruction.

EXAMPLES OF "B", "F", "E", "L", AND "Q" UCON INSTRUCTIONS

r Record Format 1

column numbers	> 123		1111111 0123 4 56		23222222									
	:н :н	142 155 169	143 156	144 157	145 158	146 160	147 161	148 162	149 163	150 164	151 165	152 166	153 167	154 168

FIGURE 7.5A. Example Of The UCON *H+* Instruction.

Record Format

column number	>11	2345678	111111 9012345	111122 5678901	222222 234557	223333 890123	333333 456789	444444 012345	444455 578901	555555 234567	556666 890123	666666 456789	777777)12345	77778 57890
Record	: H- : H : H : H	- 142 155 169	143 156	144 157	145 158	146 160	147 161	148 162	149 163	150 164	151 165	152 166	153 167	154 168

FIGURE 7.58. Example Of The UCON "H-" Instruction.

Record Format

coluen numbers 2	11111111112222222223333333334444444445555555555
Example 1	IA+AAABBB
2	IA-AAACCC

FIGURE 7.5C. Examples Of The UCON "A" Instruction.

Record Format 1

column numbers	> 12	111111111222222222333333333444444445555555555
Record	1 IC+ 2 IC 3 IC 4 IC 5 IC	700,1500,1100,1500,1100,1700,1300,1700, 1300,1100,1700,1100,1700,1800,2400,1150, 3100,1700,3100,3050,2600,2650,2200,3050, 1700,2600,1700,2100,1300,2100,1300,1900 700,1900,

FIGURE 7.5D. Example Of The UCON "C" Instruction.

			F	IGURE	7.5A	- D		
EXAMPLES	OF	THE	UCON	"Н",	^н Ач,	AND	<u>"C"</u>	INSTRUCTIONS

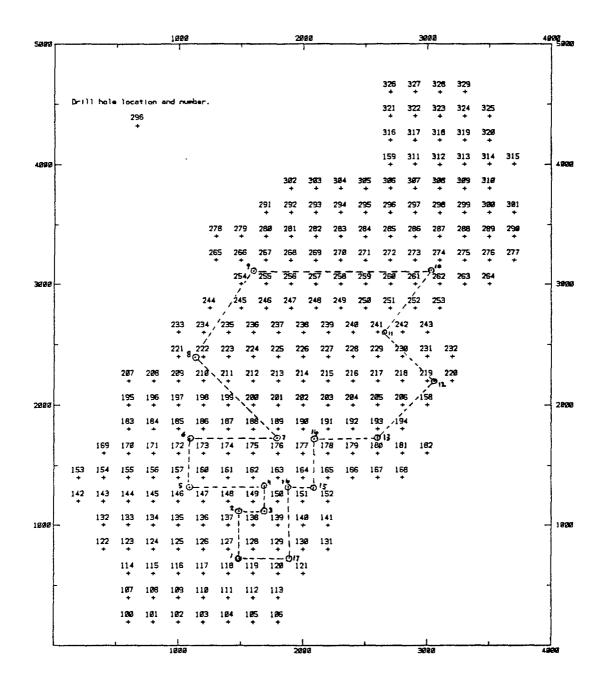


FIGURE 7.6 STARDAT DRILL HOLE LOCATION MAP WITH EXAMPLE POLYGON FOR "C-EDIT"

93

r Record Format 1

coluen nuaber		1111111112222222222333333334444444445555555555
Record	234	B# '# 'VARIOUS COMBINED UCON INSTRUCTIONS; 3 FCMs.' F#'STARDAT',E1 1770,1750, 01 .01,1.4 A-BBB H- 201 202 203 204 213 214 215 216
	6	<pre>IC+ 700,1500,1100,1500,1100,1700,1300,1700, IC 1300,1100,1700,1100,1700,1800,2400,1150, IC 3100,1700,3100,3050,2600,2650,2200,3050, IC 1700,2600,1700,2100,1300,2100,1300,1900, IC 700,1900.</pre>
	10 11 12 13	IFF'STARDATL', ON LF 'JHUI','JNC ' An H- 215 216
		CN

FIGURE 7.7 EXAMPLE OF UCON FILE REQUESTING MULTIPLE FILES AND VARIOUS OUTPUTS

•

8.0 PROGRAM URDAT

8.1 GENERAL CONCEPTS AND OPERATIONS

URDAT is a "front-end" program designed to select and edit any combination of data from the UDAT primary sample-assay files and:

- 1. Create listings (Section 8.3.1) and summaries (Section 8.3.2) of the selected data for review and evaluation purposes.
- 2. Interpret gamma-log data (Section 8.4).

3. Create standardized intermediate UDAT files which may be accessed by any of the ore reserves programs (Section 8.5).

8.1.1 Requirements

To run program URDAT, it is only necessary that a UCON file (Section 7.0) be available and that the data files requested in that UCON file exist as primary UDAT files If any of the latter contain data in the borehole log "A-E" format, then file "RNGTBL" must also be available and it must contain the set(s) of range-scale values corresponding to the particular "A-E" code(s) in the data (see Sections 5.2.1.1 and 5.2.1.2).

File "RNGTBL" must be in the same working directory as the URDAT program execute module ("URDAT.EXE"). If the UCON file is on the default drive, it must also be in the same directory as "URDAT.EXE".

All other control information needed for URDAT is submitted interactively during the URDAT RUN (Section 8.6).

The data listings and summaries are output to a "print-output" file (Section 8.2).

8.1.2 Importance of Reviewing Data

Once a certain familiarity has been gained with a particular computer-based ore reserve data and calculation system, there is a tendency for many users to review the data at increasingly lower frequencies! They come to trust the data implicity, simply because it seems so well organized, and also find it tedious to review sometimes seemingly overwhelming quantities of listings. If large amounts of data are involved in an ore reserves calculation, the attitude may prevail that a few errors will not influence the results.

Such a point-of-view can cause problems, especially when the ore reserve analyst becomes more and more separated from the beginning of the data preparation stream by borehole-log-analysis specialists, automaticdigitizing systems, data-entry operators, computer experts, and others. It is easy for difficult-to-detect errors to occur in data files. Just one or two small errors in basic borehole-log interpretation factors, for example, wreck havoc on a final reserves estimate.

Therefore, it is recommended that listings be made (and carefully reviewed) of all new or edited UDAT primary data files before creating intermediate files for use as input to the ore reserves programs.

URDAT is designed to make data review as easy as possible. Listings may be condensed to use relatively little space; sample assay values are flagged; and data summaries are available. A quick scan of the latter is warranted every time an intermediate data file is created.

There are other measures not in the scope of the URAD system at this time which can be taken to minimize data errors. These include quality control of digitizing operations and utility computer programs which flag various parameters if they lie outside given value ranges.

8.2 THE PRINT-OUTPUT FILE

8.2.1 General URAD Usage of the Print-Output File

The "print-output" ("p-o") file, in all the URAD programs, is designated as the file on which formatted output from a program RUN will be placed. Printoutput includes detailed and summary results which are used for purposes of analysis. It also includes error or end-of-RUN messages, but not scratch or intermediate data files intended as input to other programs.

The p-o file may be a hard or floppy disk file or the printer itself. To avoid the creation of a large number of p-o files over an extended period, all URAD programs provide for use of a default p-o file named "OUTPUT"; however, any other file name may be designated as the p-o file for any given RUN. All the URAD programs also provide the option of sending output directly to the printer during program execution by assigning 'LPT1' as the p-o file.

A p-o file is always created when a URAD program is run, regardless of the type of RUN specified. Even if an output listing is not requested, the default file "OUTPUT" (or any other file selected) will be newly created and any previous information on the given file will be destroyed.

When the p-o is placed on a disk file, all the FORTRAN-generated printerdriver controls are preserved; if it is later desired to print such output, program FORPRINT (Section 8.2.3) may be used, and all the original output specifications (pagination, line spacing, etc.) will still be in effect. Execution of the programs is much slower if printing is done "on-line", so this feature provides the capability of making repeated "test" RUNS for a given problem, sending the p-o to a disk file, scanning the results each time, and then actually printing the output when satisfied with the results (or at a more convenient time, or even on a different computer system).

8.2.1.1 Naming and Location of P-O files

There is a maximum of 15 characters permitted for URAD file names. Directory or subdirectory names are not recommended in naming p-o files; any

PROGRAM URDAT

p-o file created on the default drive will be in the same directory as the URDAT program execute module. P-o files created on a floppy disk should be in the latter's root directory.

If the p-o file is not on the default drive, make sure the device name d: is included as part of the file name; examples, "A:FILENAME" or "B:URDPO1.SAV".

It is prudent to check the intended p-o file before making any RUN to insure that it does not contain information which should be saved. If it does, then rename the file or copy it to another file using standard DOS commands -- before making the RUN.

8.2.2 URAD Printing Protocol

URAD printer controls are compatible with the EPSOM FX Series, or with any printers which may set to emulate the EPSOM ("Standard Printing Mode"). Print-output listings may be generated for various combinations of paper page size, line spacing, and/or character size.

8.2.2.1 Vertical Print Control

"Standard" printing paper page length (vertical) is considered by URAD to be 11" (inches). However, any other length may be specified, to the nearest 10th of an inch.

"Standard" line spacing is 6 lines per inch (lpi), or 66 lines per page (lpp) with ll"-inch paper page length. Optionally, 6, 7, 8, or 9 lpi line spacing may be requested for any print output.

8.2.2.2 Horizontal Print Control

"Standard" paper page width (horizontal, excluding the perforated strips) is considered to be 8.5"; however any width (5" minimum) may be optionally specified, to the nearest 10th of an inch.

The "character width" here defines both the character size and horizontal spacing. Three character widths are available: "Standard Pica" -- 10 char acters per inch (cpi); "Standard Elite" -- 12 cpi; and "Condensed Pica" -- 17.2 cpi.

8.2.2.3 Test for Character Width Versus Page Width

The lines in the various sections of URAD print-output are formatted to either 80 (maximum) or 132 (maximum) columns. If the combination of page and character width, established interactively, does not allow printing of the lines, at the maximum format width used by a program, without overlap (to the next line), a width adjustment is automatically attempted and a message is displayed.

For example, the URDAT program provides a special option for an 80- or 132- character per line format; if the paper width is 8.5" and the 132 cpl format is chosen, the character width is automatically changed to 17.1 cpl.

PROGRAM URDAT

In those sections of the other URAD programs which are partly in the 132column format mode, the character width is automatically condensed, if necessary, and then restored to the initial conditions for the 80-column sections.

8.2.2.4 Pagination

The term "pagination", as used here, refers to the numbering of output pages, entering headings at the top of each new page, and the structuring of output to fit within each page; it is provided as an option in some of the programs. If pagination is not used then the output lines are simply printed consecutively without regard to pages and the full number of available lines per page are used, except for a small margin at the top and bottom of each page.

Under the "testing" option (example: Section 8.6.2.1) printing is all done at 8 lpi, 17.2 cpi (condensed), with no pagination, and no top or bottom margins.

When the pagination option is in effect, the maximum number of lines per page are determined as follows:

mlpp = (lpi * pl) - lpi where,

mlpp = maximum number of lines per page (to nearest integer); lpi = lines per inch (entered interactively); pl = page length in inches (entered interactively).

For example, with a paper length of 11 inches, there is a maximum of 60 lines per page printed at 6 lpi and 80 lines at 10 lpi. This provides a minimum total top/bottom margin of approximately one inch. The margin placement can be controlled when setting the position of the top of the first page with respect to the typewriter ribbon before a RUN is made.

An interactive option is provided to over-ride the default number of lines per page, if desired; only a reduction of lpp is allowed.

8.2.2.5 Limiting Output Lines

URAD programs provide the option of placing an approximate limit to the total number of p-o lines in a RUN. This is useful for testing data, for examining p-o layouts, or for avoiding output of an accidental or unwanted extremely large number of p-o lines due to unchecked errors in data or controls. If the number of output lines exceeds the limit, the RUN is simply terminated; all data processed to that point will be available on the p-o file, but summaries will not be available. If an intermediate data file is being created when such a break occurs, the file will contain all sample set data created up to the point of termination.

8.2.2.6 Limiting Sample Sets Processed

The programs also provide the option of placing a limit to the number of sample sets to be processed. Conditions are the same as for limiting output lines (above).

8.2.3 Program FORPRINT

Program FORPRINT is used to print any print-output (p-o) file generated by a URAD program. When URAD listings are directed to a p-o file other than 'LPT1', the first output record is a print-control identification record which contains the following:

1. Name of the URAD program which generated the output; record columns (rc) 2-6; ie. "URDAT", "ORSAC", "RESUV", or "SCOR_".

2. Pagination code; rc 9; 0 if output not paginated, 1 if paginated.

3. Format mode code; rc 10; 1 if maximum number of characters per line is 80, 2 if 132.

4. Character width code; 1 if 10 cpi, 2 if 12 cpi, or 3 if 17.1 cpi.

5. Paper length (vertical); rc 11-15; length to nearest 10th of inch.

If the p-o header record has been "disturbed", FORPRINT will display an appropriate message.

Note: All the printer-driver commands are included in the output so that the file may be later printed exactly as specified during the original RUN. If any of these commands are disturbed, the listing may be garbled!

FORPRINT simply requests the name of the p-o file to be printed and provides the opportunity to check on paper size requirements before continuing.

8.2.3.1 Program RESTPRN If any listing of a URAD program is aborted before normal termination, pro gram RESTPRN should be run to restore the printer.

8.3 URDAT PRINT-OUTPUT

8.3.1 Detailed Data Listings

The detailed data listings identify all the parameters for each selected sample set in a form designed for easy review. If corrections for radiometric disequilibrium have been made, the applicable coefficients are shown. If sample editing has been carried out, the selected intervals are noted, but the entire sample set is still listed. Lithologic are listed.

The position, thickness, and grade of each sample interval are shown. Reference positions are the bottom the sample intervals, denoted by depth (from collar) or by elevation, depending on the option chosen. Uranium grades are listed to the nearest thousandth of a percent, with certain ranges of values marked as follows for quick identification:

> "*" 0.100 to 0.199 %U308 "**" 0.200 to 0.499 " "\$" 0.500 to 0.999 " "\$\$" 1.000 and over "

8.3.1.1 Format Mode

URDAT provides the option of printing the detailed data listing in an 80- or 132-column-per-line format. The latter allows more data to be printed on each line and is useful for saving paper space. This mode may be used at 10 cpi or 12 cpi if the paper width is sufficient.

8.3.1.2 Examples of Listings The following examples illustrate the various formats:

Figure 8.1 is a listing of a "uranium-only" sample set in the 80- column mode, with both editing and disequilibrium corrections applied.

Figure 8.2 shows the same set in the 132-column, condensed mode.

Figure 8.3 lists a bimetal sample set in the 80-column mode.

Note that the 132-column, condensed mode, used with 8.5-inch paper will save considerable space. The 132-column mode may also be used with a character width of 10 cpi if 14 3/4-inch printing width is available.

8.3.1.3 Page Headers

The heading for each listing contains the name of the primary UDAT file from which the data were obtained, the date of the RUN, the name of the user/operator, the "block name" entered in the UCON file, the names of the UCON and print-output files, and the name of the intermediate data file, if such has been created. If no pagination is requested, the heading will only appear each time a new primary UDAT file is accessed. If pagination is in effect, a heading will appear at the beginning of each new page.

8.3.2 Data Summaries

At the end of each URDAT run, a summary review of all sample sets processed is always listed. The summary consists of two parts as described below. For each part, the number of sample sets processed in each of the defined categories is provided, and there is also an option to list the actual sample numbers of all sets in each category. The latter option is termed a "detailed" summary. Data summaries use the 80-column format. 8.3.2.1 Sample Set Status Summary The status of sample sets is summarized by the following categories:

Sets Included as Valid for RUN.

1. Samples are available in given set.

2. Samples are available, but some deleted due to edit.

3. Samples are available, but none in interval selected by edit; the interval is assumed to be barren

4. No samples are available; the entire set is assumed barren for the total interval sampled.

Sets not included as valid for RUN.

5. Set deleted by coordinate edit.

6. Set deleted by hole or area number edit.

7. Set deleted from run due to non-applicability or invalid data.

An example of the detailed sample set status summary is shown in Figure 8.4.

8.3.2.2 "Peak-Grade" Summary

From those sample sets considered to be valid for the given RUN, the assays in each set are then tested to determine the highest of the following categories into which they fall:

Grade	. Kange	(6030	8) or	GT	(40300	x in	ickness)
4 feet	@ 0.001	to	0.049		0.001	to	0.199
11	0.050	to	0.069		0.200	to	0.299
41	0.070	to	0.099		0.300	to	0.399
11	0.100	to	0.199		0.400	to	0.499
11	0.120	to	0.149		0.500	to	0.599
t 1	0.150	to	0.199		0.600	to	0.799
11	0.200	to	0.249		0.800	to	0.999
11	0.250	to	0.299		1.000	to	1.199
н	0.300	to	0.399		1.200	to	1.599
11	0.400	to	0.499		1.600	to	1.999
11	0.500	&	over		2.000	&	over

Testing is done starting with the highest category. The samples need not be contiguous. The only criterion is that any of the samples used in meeting either the four-foot or GT criteria have a grade value at least as great as the grade cutoff for the given category; this cutoff is represented by the left-most grade for each category in the above list.

This summary is not intended for ore reserves analysis purposes but simply to provide a quick review of the approximate "peak" level of uranium values

in the sets of data processed in a given URDAT RUN. Figure 8.5 gives an example of the "peak-grade" summary.

8.3.2.3 Example of Uranium "Intensity" Plot

If appropriate plotting equipment and software are available, the results of the peak-grade summaries may be used to create plots which provide a preliminary overview of the "insensity" of uranium mineralization represented by a set of basic data. Figure 8.6 shows the drill hole location plot of the file "STARDAT" data, with each hole location symbol reflecting the peak-grade of the given sample set. (The grade categories have been combined into wider ranges.)

8.4 GAMMA-LOG INTERPRETATIONS

During a URDAT RUN, all sample data in the "borehole log" format (Section 6.3) are converted to estimated uranium values using the GAMLOG iterative interpretation technique. Data in the "xxQ" format are exempted, since they represent already interpreted values.

8.4.1 Calculation of Sample Interval Depths

The protocol for measuring the depths of readings of representative radioactivity during the "production" logging of boreholes is usually to initiate such readings at positions which represent even divisions of the given measurement system. One-foot readings are theoretically positioned at even increments of one foot in depth (from the collar), for example, depths of, say, 10, 11, - 20 feet, rather than 10.35, 11.35, - 12.35 feet. Similarly, one-half foot readings are positioned at even foot and half-foot increments of depth. This method is also used for convenience when digitizing from borehole "strip" log charts.

In most techniques for interpreting gamma-log data, it is assumed that any given measurement (or "reading") of radioactivity taken in a borehole is actually at the midpoint of the interval which it represents. Therefore, if readings have been taken at one-half-foot intervals, and a reading at a depth of, say, 100 feet is ultimately converted to an estimated uranium value by some interpretive method, the interval represented by that estimated uranium value is actually between 99.5 and 100.5 feet in depth.

For a sample set in the "borehole" format, the "depth-to-first-reading" ("d-t-f-r") is considered by URDAT to be the depth to the position of the interval represented by the first reading, but the depth to the top of the first sample interval generated at that point is recognized to be the d-t-f-r minus one-half of the applicable readout interval.

Therefore, if the readout interval is 1 foot, the top depth of the first sample interval is calculated to be one-half foot less than the d-t-f-r. If the d-t-f-r is entered as zero, then the subtraction does not take place, and the depth to top of the first sample interval is calculated also as zero.

PROGRAM URDAT

If the readout interval is one-half foot, however, no subtraction is ever made, the top depth of the first sample interval is the same as the d-t-f-r, and all sample intervals are assigned depths which are 3 inches lower than they theoretically should be. This is done to avoid having to record depths to the nearest hundredth of a foot, and, in practice, it does not appear that the depths can really be measured to that degree of accuracy under most logging conditions, except for relatively "shallow" holes.

The thickness of any "skipped" intervals (Section x.x) is reduced by a quantity equal to the readout interval, again, since each cps or inch-deflection "reading" is assumed to represent the "mid-point" of its representive thickness, i.e. the value of the readout interval. For example, if (proceding downward) the last reading preceding a skipped interval of 10 feet is at 900 feet in depth, and the first interval following the "skip" is at 910 feet, then (assuming the readout interval at 0.5 feet) the actual "skip" must be represented by only 9.5 feet since the bottom of the interval represented by the upper reading is actually assumed at 900.25 feet in depth, and that of the lower reading at 909.75 feet.

8.5 INTERMEDIATE UDAT FILES

8.5.1 Usage of the Intermediate UDAT Files

One of the primary functions of the URDAT program is to create standardized data files from the mix of various formats which comprise the primary data files. Then any program which requires the sample set data need only have a simple input routine to read them in. The standardized files created by URDAT are termed "intermediate" UDAT files and are in sequential binary mode.

Naming and location of the intermediate files follows the same protocol as described for the p-o files (see Section 2.8.1.1). There is no default name for intermediate files and the printer (LPT1) must not be used. It is re commended that the extensions "B" or "BIN" be used with intermediate file names; examples: "FILENAME.B" or A:FILENAME.BIN".

8.5.2 Description of the Intermediate Files

The intermediate files are described in detail in the event that they may be useful as input to other programs besides those in URAD.

All records are in binary mode.

8.5.2.1 File Identification Record

The first record of any intermediate UDAT file is always an 80-character identification record containing the "block name" which was entered in the block identifier record (Sections 7.3 & 7.4) of the UCON file used in generating the given intermediate file. All other records contain sample set data. Comment records ("C" in column 1) in the source primary UDAT files are not placed on the intermediate files.

8.5.2.2 Sample Set Header Record

Each sample set is represented by a "header" record. If there are any sample data for the sample set, the header record is followed by a "sample" record. If there are lithologic data, the sample record is followed by a "lithologic" record; if there is no sample record, the lithologic record immediately follows the header record.

All header records are of the same length. Sample and lithologic records are of variable length.

In the following description of the record variables, "I" is integer, "R" is real, and "Ch" is character. The number following the "*" is the number of bytes. The abbreviation in quotes is that displayed when the sample set data from an intermediate file is output during execution of one of the ore reserves programs (Section 8.5.3).

The header record contains:

"Cl3"; Ch*1; sample-type code in column 13 of original header record. "Cl4"; 1*2; sample-type code in column 14 of original header record. "NDAT";1*2; basic data type: 1 = contiguous format, U only; 2 = noncontiguous format (U-only); 3 = borehole-log format; 4 = contiguous format, U and V. "IQC"; 1*2; code defining original disequilibrium status of U assays (see Figure 5.1: if non-borehole format and NDAT=1, or 2, then IQC is: 1 -- if not subject to disequilibrium correction; 2 -- if subject to correction; if non-borehole format and NDAT=4, then ICQ is: 3 -- if not subject to disequilibrium correction; 4 -- if subject to correction; if borehole format, NDAT=3, then ICQ is: 1 -- if format type (column 15) was "C"; 2 -- if format type was "U"; 3 -- if format type was "Z"; 4 -- if format type was "!"; (types "C", "U", "Z",, and "I" are always subject to correction) 5 -- if format type was "Q", not subject to correction; 6 -- if format type was "Q", subject to correction; if the code is not applicable, ICQ = 7. "IDQ"; 1*2; code defining current status of "correctable" data: 0 -- if diseq. correction has not been applied in URDAT; 1 -- if diseq. correction has already been applied in URDAT, or data not subject to disequilbrium correction. "A#"; Ch*3; area number (columns 4-6 of original header). "H#"; CH*6; hole (sample set) number (columns 7-12 of header). "P#"; Ch*7; property code (columns 73-79 of header). "NC"; R*4; north coordinate. "EC"; R*4; east coordinate. "EL"; R*4; original collar elevation. "PE"; R*4; elevation at pit bottom; a "-9999." indicates no depth to pit bottom was entered in original data. "DPO"; R*4; original depth to first sample interval; 0 if no samples. "DSM"; R*4; depth sampled (from original collar). "WTB"; R*4; depth to oxid./non-oxid. contact (from original collar). "IC2"; I*2; elevation/lithologic edit status code ("control zone" is

that defined by upper and lower edit elevation limits): if 1, data not edited.

- if 2, data edited; sample set barren; control zone assumed barren.
- if 3, data edited; samples available, but some have been deleted.
 - 4, will not occur; sample set has already been deleted.
- if 5, data edited; samples available, but control zone is barren. 6, will not occur; sample set has already been deleted.
- if 7, data edited; samples available, and none deleted.
- "El"; R*4; if edited, new elevation at top of total sample interval; if not, same as "EL".
- "E2"; R*4; if edited, new elev. at bottom of total sample interval; if not, elevation represented by "DSM".
- "DPC"; R*4; if edited, new depth to 1st sample interval -- from "E1"; if not, same as "DPO".
- "NA"; 1*2; number of sample intervals in set; 0 if none. If NA is set to a negative value, the grade variables are 1*4 instead of 1*2. This only occurs when at least one uranium grade exceeds a value of 32%U308.

"NL"; 1*2; number of lithologic units in sample set; 0 if none.

8.5.2.3 Sample Set Sample Record

The sample record will be present if "NA" (above) is non-zero; it contains "NA" number of sample intervals. If "NDAT"=1,2, or 3, each interval con sists of thickness (R*4) and grade %U308 x 1000 (1*2). If "NDAT" = 4, each interval consists of thickness (R*4), grade %V205 x 100 (1*2), and grade %U308 x 1000 (1*2). In order to save space in the intermediate data files, the uranium and vanadium grades are converted, in program URDAT, to INTEGER*2 by multiplying by 1000 and 100 respectively to preserve the origi nal precision. The integer values are rounded to the nearest whole number (using the intrinsic function NINT).

A uranium-only sample record has the form:

(T(1), |A(1)), (T(2), |A(2)), - - - (T(NA), |A(NA)) where,

T(1) and |A(1)| are the thickness and integer representative of the U grade, respectively, of the first sample interval, etc.

A uranium & vanadium sample record has the form:

(T(1), IV(1), IA(1)), (T(2), IV(2), IA(2)), - - - (T(NA), IV(NA), IA(NA))

where, IV(1) is the integer representative of the V grade of the 1st sample interval, etc; T and IA are as above.

If the value of any uranium grade in the sample set exceeds 32%U308, the Ugrade variables are stored on the intermediate files as 1*4 and the value of NA is set to negative. Any input routine which processes the intermediate data files must have two arrays to handle the integer representations of the uranium grades -- one an 1*2 array and the other an 1*4 array. The sign of "NA" must be checked and the uranium assays initially read into the appro priate 1*2 array (if NA is positive) or the 1*4 array (if NA is negative). This requires alternate read statements. Either array of integers may then be reconverted to REAL by setting NA=abs(NA) and carrying out: A(i) = float(IA(i)) / 1000. where,

A = the array of grades reconverted to R*4;

IA = the | *2 or | *4 array into which the U grades are read;

i = the element number of the grade arrays, for <math>i = 1 to NA.

V-values are simply handled by reading them into an INTEGER*2 array and carrying out:

V(i) = float(IV(i))/100. where,

V = the array of grades reconverted to R*4; IV = the 1*2 array into which the V grades are read i = same as above.

8.5.2.4 Sample Set Lithologic Record The lithologic record will be present if "NL" is non-zero, and has the form:

((UN(1), DU(1)), (UN(2), DU(2)), - - - (UN(NL), DU(NL)) where,

UN(1) (Ch*4) is the code for the 1st (topmost) lithologic unit and DU(1) (R*4) is the depth to the top of the 1st unit from the original collar elevation (see Section 6.2).

8.5.3 "Dumping" of the Intermediate Data Files

Programs RESUV, ORSAC, and SCOR each provide the option to list a brief summary of the sample set data from the intermediate UDAT files which they are processing during a given RUN. This is primarily useful for examining the data during test runs. The header data is referenced by the abbrevia tions listed in Section 8.5. The sample data are simply shown by a sequen tial listing of the thickness, and grade of each sample interval as shown in Figure 11.1.

It is not recommended that the above option be taken with long production runs since it requires a great deal of printing, and the primary data file should have been printed at least once when processing with URDAT. If it is taken, the resulting listing will be non-paginated.

8.6 URDAT INTERACTIVE ENTRIES

The URDAT interactive entries and various options are described below in the approximate order in which they occur during program execution. The "minor" (4-number) paragraph headings below refer to the prompts which appear on the console monitor. Many of the entries and options are also used in programs RESUV, ORSAC, and SCOR.

See Section 10 for general interactive-entry procedures.

PROGRAM URDAT

8.6.1 Establishing Files and Desired Output

8.6.1.1 Print-Output File Enter the name of the print-output file (Section 8.2.1.1). Leave entry blank, and press RETURN, if default file "OUTPUT" is desired.

Do not use quotes when entering the p-o file name.

8.6.1.2 UCON file

Enter the name of the UCON file to be used to control selection of primary UDAT sample data. If it is on the default drive, insure that it is in the same directory as "URADT.EXE"; if not on the default drive, remember to include the device "d:" name. If the file is named "UCON" (the default name), leave entry blank and press RETURN.

8.6.1.3 Type of Output

Enter the code for type of output desired. There are four options:

Option 1. A detailed listing of the sample data (Section 8.3.1) will be output onto the p-o file along with a data status summary (Section 8.3.2). An option to include a detailed list of holes falling under each summary category is provided later. No intermediate data file will be created.

Option 2. An intermediate data file (Section 8.5) will be created, but no data listing will be made. The data status summaries will automatically be provided on the p-o file.

Option 3. Options "1" and "2" will be combined; a p-o listing and summaries and an intermediate UDAT file will all be created.

Option 4. No data listing or intermediate file will be created, but a detailed data status and peak grade summary will be output. This option is useful when the data have already been reviewed, but it is desired to check the status of a large number of sample sets prior to creating an intermediate data file.

8.6.1.4 Intermediate UDAT file

Enter the name to be assigned to the intermediate UDAT file (review Sections 8.5.1 and 8.1.2). This prompt is only given if options "2" or "3" (Section 8.6.1.3) are taken.

8.6.1.5 Print Summary in Condensed Mode? If options "2" or "4" (Section 8.6.1.4) were taken option is provided to print the summary in condensed mode Y/N response .

Note: Following this prompt: if option "2" was taken, the next prompt is for limiting the number of sample sets to be processed (Section 8.6.3.2); if option "4" was taken, the next prompt is for the sample interval reference position (Section 8.6.5).

8.6.2 Print Controls for Data Listing

If options "1" or "3" (Section8.6.1.3) were taken, then there is a series of options available for establishing the form of the detailed data listing.

8.6.2.1 Detailed Print-Output Control or "Test" Mode?

Enter Y to specify the print output in detail; enter N for a simple nonpaginated, non-margin, condensed listing (Section 8.2.2.4). The latter is useful for saving paper when a more structured listing is not needed. When the N option is taken, the next prompt is for limiting the number of lines to be printed (Section 8.6.3.1).

8.6.2.2 Pagination Requested? Enter Y (yes) or N (no) to request for pagination (Section 8.2.2.4).

8.6.2.3 Paper Page Length & Line Spacing: "Standard" or Other? Enter "1" for paper page length (vertical) of 11 inches and spacing of 6 lines per inch; enter "2" to specify optional length and line spacing. If option 1 is taken, the next prompt is for paper width (Section 8.6.2.6).

8.6.2.4 Specify Actual Page Length This prompt is given if option 2, Section 8.6.2.4, was taken.

Enter, to the nearest 10th of an inch, the actual length (vertical, Section 8.2.2.1) of the pages of printing paper to be used. If value is a whole number, the decimal point is not required. Make sure the length is accurately measured.

8.6.2.5 Line Spacing? Enter "6", "7", "8", or "9" lines per inch; "7" actually results in 7.2 lpi.

8.6.2.6 Paper Page Width?

This entry refers to the actual width (horizontal, Section 8.2.2.2) of the pages of printing paper to be used. Enter "1" (or blank) if 8.5"; enter "2" if $14 \ 3/4$ " or greater; enter "3" if page width is other than these. If options 1 or 2 are taken, the next prompt will be for character width (Section 8.6.2.8).

8.6.2.7 Specify Actual Page Width This prompt is given if option 3, Section 8.6.2.6, was taken.

Enter, to the nearest 10th of an inch, the actual width (horizontal, Section 8.2.2.2) of the pages of printing paper to be used. If value is a whole number, the decimal point is not required. Make sure the width is accurately measured.

8.6.2.8 Specify Print Width

This entry specifies the character width and size in characters per inch (cpi, horizontal) as described in Section 8.2.2.2.

Enter "1" (or blank) for 10 cpi; "2" for 12 cpi; or "3" for 17.1 cpi.

8.6.2.9 Format Mode?

Enter "1" for listing format designed for maximum of 80 columns per line; enter "2" for maximum of 132 columns per line (Section 8.3.1.1).

8.6.2.10 Option to Continue, Reset Print Controls, or Abort

Once the page width, character width, and format mode have been set, a test is made to determine if page width is sufficient to contain the print lines, as described in Section 8.2.2.3. If the character width must be adjusted to meet the specified page width, a prompt is given for 3 options.

Enter "Y" to continue RUN with revised character width; enter "N" to restart the whole print control sequence; enter " \star " to abort program.

If the paper width is insufficient to contain the lines, even in the conden sed-width mode, the RUN will terminate. Wider paper will be required.

8.6.2.11 Option to Reduce Number of Lines Per Page If the pagination option (Section 8.6.2.2) has been selected, the option is provided here to reduce number of lines per page as explained in Section 8.2.2.4. Enter "Y" if a reduction is desired; "N" if not.

8.6.2.12 Lines Per Page If the Y option was taken in Section 8.6.2.11, the prompt is given to enter the number of lines per page desired.

8.6.3 Limiting Output Listing

8.6.3.1 Limit Number of Output Lines? Enter "Y" to limit output lines (Section 8.2.2.5); next prompt will be for number of lines. Enter "N" if no limit desired.

8.6.3.2 Limit Number of Sample Sets Processed? Enter "Y" to limit sample sets processed (Section 8.2.2.6); next prompt will be for number of sets. Enter "N" if no limit desired.

8.6.4 Sample Data Status and "Peak Grade" Summaries

See Section 8.3.2 for description of the data summaries. The summaries are always printed, unless a RUN is cut short because of output limits. The following options relate to whether or not a complete (or "detailed") list ing is desired of all sample sets included in each summary category. Ten sample set numbers are printed in an output line.

PROGRAM URDAT

8.6.4.1 Detailed Summary Listings?

Enter: "1" (or leave blank) for no detail (listing of sample set numbers); "2" for detail on sample set status only (Section 8.3.2.1); "3" for detail on peak grade summary only (Section 8.3.2.2); "4" for options 2 and 3 combined.

8.6.5 Method of Referencing Sample Set Position

In the sample set data listings (Section 8.3.1), each sample interval is referenced by the position at the "bottom" of the interval, i.e. the end of the interval furthest from the collar. This position may be referenced either as an elevation or by depth from the collar.

8.6.5.1 Sample Interval Position Reference? Enter "1" (or blank) for reference by depths, "2" for elevations.

8.6.6 Header Information

The following entries are used for identification purposes and are entered on page headings, but program execution will not be affected if they are left blank.

8.6.6.1 Name of RUN Submittor Enter the name of the person making the RUN. There cannot be more than 20 characters, including blanks.

8.6.6.2 Date Enter the date of the run. There cannot be more than 8 characters, including blanks; any characters are permissible.

COLLAR ; NI	DRTH E	AST ; P	PIT IDPTH:	BDIISMPL	f 1	PRPRTY 1	AREA '	HOLE
ELEV. : C	OORD. C	CORD.:DE	EPTHISMPLI	DXDICODE	:	CODE :	ND. 1	SAMPLE
;		1	1 1	•	;	:	ł	Ħ
7203.01	7930	93761	151891	100: F1U	i	URDAT :	858 I	TEST 3
H20 K-FA								
DPTH: (LA	ST); TI							
1	1		1	-	4 4	:(IN) 1		
2301.0000	03201	3.01 ND	11.2811.0	0:	: A3	1 1		

SACHA LUG	INTERPRE	TED VRED	JES; DATA:	UNCURR	ECIED U	PS. DAT	E LUGGE	D: 07 0
BOT DPTH	THK.	GRADE		THE	GRADE	BOT DPTH	THK.	GRADE
(FT.)			(FT.)					
			· · · · · · · · · · · · · · · · · · ·					
1591.5	.50	.004	: 1599.5	. 50	.130#	1607.5	.50	.000
1592.0		.000	: :600.0					.013
1592.5		.032	: 1600.5					.059
1593.0		600.	1 1601.0					.009
1593.5		.000	1 1601.5		.002		.50	.000
1594.0		.041	1 1602.0		.008		.5¢	.005
1594.5		.035	1602.5		.005		.50	.003
1595.0		.029	: 1603.0		.005	1623.0		.000
1595.5	.50		; 1603.5			1 1623.5	.50	.001
1596.0		.016	: 1604.0	.50	.005	1624.0	.50	:009
1596.5	.50		: 1604.5		.006	1624.5	.50	.027
1597.0			1 1605.0		.006	1 1625.0	. 50	.008
1597.5		.174*	1605.5		.011		.50	.005
1598.0					.007			.006
1598.5	.50	.106*	1 1606.5	.50	.005	1 1626.5	.50	.008
	E (1)				.003	; 1627.0	.50	.002
1599.0	.50	•13/#	1607.0		* ^ ^ >	1 102/10	• • • •	

FIGURE 8.1 URDAT LISTING SHOWING THE 80-COLUMN FORMAT MODE (U-ONLY)

•

ELEV.			SEPTH	PLIDID	CODE									CDDE	1	SAMPL
1000.51			150.01 4				V205 ASSAY							VDATA	: VVV	1 TESI
DI DPTH (FT.)	THK. (FT.)	SRADE -	SRADE 1	BDT DP	THE THE	. 6RAD	E GRADE	BOT I			GRADE U308	GRADE V205	BOT DI		6RADE UJO8	GRAI V20
401.0 403.0 408.0 410.0 412.0	1.00 2.00 5.00 2.00 2.00	.050 .020 .040 .100# .150#	1.050 1.020 2.000 5.550 .500	414. 424. 424. 429.	0 2.00 0 10.00 5 .50 5 5.00	.02(.01(.20(.04(0 .050 0** 1.000 0 4.000	43 43 44 44	5.5 2 7.5 2 7.5 10 8.0 1	.00 .00 .00 .50	.020	.020 2.000 .200 5.000	451 453 455 465 465	.0 2.00 .0 2.00 .0 10.00	.500\$.020 .550\$.010 .020	1.00 .10 2.00 .20
DLLAR ELEV. :							FACTOR: DE									HOL
203.0	7930	93761	151 151	IB9:100	F10: 1	301.00	(100330)	3.01 N	11.28	1.00	0:	A3	(IN)	CODE Urdat	BEB	TEST
	7930	9376	151	 B91100	F101 1	301.00	0003301	3.0 N	1.28	11.00	0:	A3	(IN)	LODE URDAT	BEB	TEST
	7930 5 INTERI	9376	LUES; DA	1891100 TA: U IPTH	F101 1	301.00 ED CFS ADE	(00330	3.0 N	0 11.28 C: 0/ 0 GRADE	11.00	0:	1A3 THK. (FT.)	(IN)	URDAT	BBB I	TEST

FIGURE 8.2 URDAT LISTING SHOWING THE 132-COLUMN FORMAT MODE

.

١ ICOLLAR : NORTH EAST : PIT (DFTH:BOT:SMPL: PRPRTY : AREA : HOLE : 1 ELEV. : COORD. COORD.:DEPTH:SMPL:OXD:CODE: CODE : NO. :(SAMPLE): /~~~~~~ / U30B EQUIV. RADIOMETRIC (UNCORR. FOR DISEQUIL.) ANDV205 ASSAYS. ١ ł _____ BOT DETH THK. GRADE GRADE BOT DETH THK. GRADE GRADE ; V205 ((FT.) (FT.) U308 : (FT.) (FT.) U30B V205 (

 401.0
 1.00
 .050
 1.050
 435.5
 2.00
 .020
 .020
 1

 403.0
 2.00
 .020
 1.020
 437.5
 2.00
 .010
 2.000
 1

 408.0
 5.00
 .040
 2.000
 447.5
 10.00
 .010
 .200
 1

 410.0
 2.00
 .100*
 5.550
 448.0
 .50
 .250**
 5.000
 1

 412.0
 2.00
 .150*
 .500
 449.0
 1.00
 .020
 .100
 1

 : 414.0 2.00 .020 2.000 : 451.0 2.00 .500\$ 1.000 : .050 | 453.0 2.00 .020 .100 | 424.0 10.00 .010 : 424.5 .50 .200** 1.000 | 455.0 2.00 .550\$ 2.000 | | 429.5 5.00 .040 4.000 | 465.0 10.00 .010 .200 | | 433.5 4.00 .500≢ 5.550 | 465.5 .50 .020 .200 | _____/

> FIGURE 8.3 URDAT LISTING SHOWING THE 80-COLUMN FORMAT MODE (U AND V)

DATA ANALYSIS OF PRIMARY U-ASSAY FILE "STARDAT", DATE: JAN 88 ID: STARDAT DATA FULL RUN: NO DISEC. NO INTERMEDIATE FILE OUTPUT REQUESTED. RUN BY:PDV

**** SUMMARY OF HOLE STATISTICS ****

TOTAL NUMBER OF HOLES PROCESSED FOR RUN/BLOCK = 230;

OF THESE:

179 HAD 143 158 173 205 225 256 276 287 1127 305 317	SAMPLE 144 160 174 194 205 215 277 255 277 255 277 293 1128 318	ASSAV 145 161 1755 206 217 208 217 208 217 208 276 266 276 266 276 266 277 266 277 266 277 266 277 317 317	DATA. 147 152 172 1867 1867 1867 1867 1867 1867 1867 1867	150 163 177 198 209 230 240 250 250 250 250 250 250 250 250 250 25	153 164 178 190 231 24: 281 295 281 295 107 120 312 312 322	154 169 179 201 222 232 243 260 270 282 292 110 121 138 313 313	155 170 190 201 212 223 245 245 245 245 241 283 111 124 302 314 324	156 171 181 202 213 224 249 249 249 249 249 25 200 315 325	157 1890 1905 1905 1905 100 100 100 100 100 100 100 100 100 1
5: HAD 142 196 255 105 137	ND A85 146 207 277 106 139	AYS REI 148 220 278 107 140	PORTED 1 149 242 295 11J 141	*BARREN 151 244 301 122 159	152 246 100 123 210	165 247 101 132 311	166 251 102 130 306	167 253 103 105 327	168 254 104 136 328

		Ī	IGURE 8	. 4		
SAMPLE	SET	STATUS	SUMMARY	FROM	FILE	STARDAT

•

.

DATA ANALYSIS OF PRIMARY U-ASSAY FILE "STARDA" ", DATE: JAN 88 ID: STARDAT DATA FULL RUN: NO DISED. NO INTERMEDIATE FILE OUTPUT REQUESTED. RUN BY:FDV

**** SUMMARY OF HOLE STATISTICS ****

PEAK-GRADE-GT SUMMARY; HOLES WITH SAMPLES, AT OR ABOVE THE INDICATED CUTOFF GRADE, TOTALING, AT LEAST, EITHER 4 FEET OR THE INDICATED GT.

	CUTOFF	ERADE	=	.05	10308,	MIN	. GT	=	.20;	# HOLES	2	24	
154 285 306	162 296 303	181 297 314		195 110 323	217 115		226 118		257 115	261 125	266 129		276 305
	CUTOFF	GRADE	=	.07	10308,	MIN	. 6T	=	.30;	# HOLES	=	17	
143 280	144 286	163 292		169 293	189 300		229 319		245 322	250	263		264
	CUTCFF	GRADE	Ŧ	.10	%U308,	MIN	. 6T	=	.40;	# HOLES	=	Ę	
187	193	231		240	272		273		279	284			
	CUTOFF	GRADE	=	.12	XU308,	MIN	. 6T	=	.50;	¥ HOLES	Ξ	19	
155 236	171 241	175 249		177 287	199 285		202 299		212 116	216 128	227 309		235
	CUTOFF	GRADE	=	.15	ZU30E,	MEN	. GT	=	.60;	∉ HOLES	=	18	
150 216	160 223	161 224		174 225	191 234		197 260		206 288	211 125	213		214
	CUTOFF	GRADE	=	.20	XU308,	MIN	. GT	=	.80;	# HOLES	=	8	
170	215	239		258	262		269		27:	29E			
	CUTGEF	GRADE	2	.25	10306,	MIN	. Gī	=	1.00;	# HGLES	=	Q	
186	201	206		219	228		230		237	208	26 B		
	CUTOFF	GRADE	2	.30	1 U308,	MIN	. GT	2	1.20;	# HOLES	=	10	
157	172	176		188	192		205		222	259	27(274
	CUTOFF	GRADE	=	. 40	ZU308,	MIN	. GT	=	1.60;	# HOLES	=	6	
156	185	198		203	2:0		253						
	CUTOFF	SRADE	=	.50	% U308,	HIN	. 61	=	2.00;	# HOLES	=	10	
175	179	190		204	Z48		275		105	111	117		127
SAMPLES IF SAMPL													ES.

FIGURE 8.5 PEAK GRADE SUMMARY FROM FILE STARDAT

¢

.

¹⁹ [······				1000					2088			- i · ·			3888	<u></u>			-	40	20 5096
					ing met off ren				•					328	5 37	- 71	28	329				
	1. 2.	a al the	nteue etntes	of 4 Um In	feet, dicated	or			produ	ct				+		•	+	+			_	
	Grad Dr 11		Grade		306. Minimu									32) X	1	D	0	324 ×	325 ×			
	Hole Symb	<u>0</u>]	Cutof Renge		Grade Thickn									318 ×			16 ×	319 O	328 ×			
-	+ ×	.2			2									159 +	3 3:		12 ×	313 ×	314 O	315 ×	-	499
	0	.1	50 60	. 149	. 28 . 48				3	182 3 ×	Ø3 3 ×	3424 ×	385 O	395 O			2 6 0	329 D	318 +			
	• • •		58 58 	. 399	.60 1.92 1.69			2	91 2 ×	97 2 0	93 : O	294 ×	295 +	296 0			96	299 D	309 0	901 +		
t	-			-		2	76 2 +	79 2 0	180 2 O	191 2 ×	62 : ×	283 X	284 D	285 O			87 D	266	289 D	29# ×	-	
							65 2 ×		67 2 ×	68 2	69 2	78	271	272			74	275 X	276	277 +		
							3	154 2 +	55 2 +		57 S	258	259	264			62 •	263 O	264			388
						244	2	45 2 0	46 2	47 2	46 : X	249	258	251		52 2 ×	53 +					
-					233 ×	234 •	235	236	237	238	239	24		41 D	242	243 ×						
-					221 ×	222	223	224	22 5	226	227	22		29	230	231 D	232 ×	!			-	
			207	281 ×		21 f x	211	212	213	214	215	21		217	216	219	228	ł				
3			195	19		198 X	199	288	281	282	2Ø3	29	-	-	206	158 ×					_	288
			183 ×	18		186	187	168	189	199	191	19	2 1	93	194 ×							
		1 6 9	178 X	17:	1 172	173 X	174	175	176	177	- 178 ×	17	- '9 1		181	182 ×						
ł	153	154	155	15	5 157	160	161	162	163	164	165	16			168	î					-	
	× 142	0 143	D 144	149	5 145	• 147	• 148	0 149	0 158	× 151	152	-	-	-	+							
	+	0 132	0 133	× 134	135	× 136	+ 137	+ 138	• 139	+ 148	+											
*		+	+	× 124		+ 126	+ 127	× 128	+ 129	+ 138	+ 131										-	189
		+		- ×	٠	-0 117	т. 11В	119	128	× 121	×											
-			1Ø7	10	a	119 119	111	112	113	×											-	
			187	19:	x	o	X	×	115													
			+ 881	19:	+ 192	193	184 +	185	+													
			J		1699					2888						3009					49	

PROGRAM URDAT

FIGURE 8.6 PEAK GRADE INTENSITY PLOT FROM URDAT RUN ON FILE STARDAT

116

٠

<u>9.0 DEFINITION OF ORE RESERVE TERMS AS USED IN THIS GUIDE</u>

9.1 PHYSICAL PARAMETERS

9.1.1 Reserves

In this guide, a reserve will be considered simply as a quantity of material estimated to be available for some current or future use. The modifying terms used along with the word "reserve" will define it more specifically.

An in-place ore reserve or simply "ore reserve" will apply to the estimate of the volume (area x thickness) of material, in the ground, which is characterized by a given minimum (mining) thickness (Section 9.1.3) and a minimum mineral content or value (Section 9.1.4) at that thickness. The material within the ore reserve volume is defined as ore and expressed in estimated tons of ore and average grade of contained mineral. The volume is converted to tons by the tonnage factor, which is the density of the material, expressed in cubic feet per ton.

The average grade is expressed in hundredths (or thousandths) of a percent U308 and may be converted to pounds of uranium by:

pounds U_{308} = tons ore x 20. x grade

An ore reserve may be additonally defined according to the method used in calculating it; examples: "diluted" or "undiluted" (Section 9.1.8.2), "geostatistical", "area-of-influence", "general outline", etc.

An extractable (ore) reserve is that portion of an in-place ore reserve which is expected to be actually removed from the ground and be available for mineral processing. It is also expressed in tons and average grade. A recoverable (ore) reserve is the quantity of mineral from the in-place ore reserve which is expected to be ultimately available in concentrate after both extraction and processing have occurred. Recoverable reserves are expressed in weight of mineral product (tons or pounds of U308).

Up to this point, there have been no economic criteria attached to the term "reserves". Such criteria may be applied by further defining an ore reserve as being "profitably recoverable at a given market price and given production costs", where the production costs may be "forward costs" (all future expenses from some given point in time) or "economic recovery costs" (basically all past and future expenses).

The term "profit" may simply mean that the value of the mineral in the reserve exceeds the cost of producing it, or, the definition may be further expanded by stipulating that a particular minimum rate of return must be realized over the period of production. The "value" of the contained mineral depends on the circumstances of sale to a buyer (Section 9.2.1).

A discussion of the pros and cons of various definitions are beyond the scope of this guide. The URAD programs are simply "mechanical" methods of estimating mineral quantities using certain rules and procedures. With the appropriate physical and economic input parameters, results may be generated to fit a great variety of economic situations. However, the programs contain no capability for analysing "discounted cash flow rate of return".

9.1.1.1 General Characteristics of URAD Reserve Estimates The ore reserves estimated by the URAD system fall into the "measured", indicated, and inferred" or "reasonably assured resource" categories.

They are based on the "general outline" method, wherein an ore reserves "entity" is simply defined by circumscribing a real or imagined boundary around the area within which the reserve will be calculated. Such a boundary is usually placed such that it reflects, to the extent possible, the margin of a mineral (or "ore") deposit or the separation of one part of a deposit from another. The most critical regions are those around the apparent periphery of the deposit where it must be decided how further out from the last "significant" sample set the actual boundary is located. The definitions of the terms " ore deposit", "boundary", and "significance" of samples set vary widely depending on the experience of the ore reserves analyst, the geologic characteristics of the area involved, and the spacing of the sample assay data.

The smallest ore reserves entity considered in URAD is a block (Section 7.1), which is defined both by a specific area value (in square feet) and by those samples which are used in estimating the thickness and average grade of ore within the area boundaries.

Reserves estimated by the general outline method are most likely to have a higher reliability if the sample sets represent either truly random spacings or, conversely, regular spacings. Therefore, care must be taken to recognize "biased" spacing of sample sets, i.e. different "density" of sample set spacing based on deposit characteristics.

It is not unusual to find that more sampling has been carried out, for example, in higher grade or more accessible portions of a deposit than others, and it is prudent to establish block outlines which take such situations into account. If one area of a deposit has been sampled at 50-foot intervals and another at 200-foot intervals, then each area should be analysed separately and the relative reliablity of results accordingly recognized.

The methodoloy of reserves analysis (and associated terminology) used in the URAD ore reserves programs was originally oriented towards relatively thinbedded and approximately horizontal uranium deposits of the bedded sand stone type, with individual ore zones varying from around two to fifty feet. However, it could be used with other types of deposits.

Evaluation of a reserve calculated by the URAD programs actually consists of a two-phase analysis The first is the calculation of the reserve with the restriction imposed by a cost-vs-value cutoff that stipulates that no material which cannot support production operating costs will be included in the reserve. The second is the overall analysis of the reserve calculated by the first step to compare its total value with the total cost of production, including all applicable capital costs. If "arbitrary" grade cutoffs are used instead of cost-vs-value cutoffs, then the economic implication of the first phase does not apply. In program SCOR, both steps are included; in programs ORSAC and RESUV, the second step must be carried out by some other means.

DEFINITION OF TERMS

9.1.1.2 "In-place Reserves, Additional"

Estimates of ore reserves calculated by ORSAC and RESUV are considered "inplace" or "geologic" reserves. These estimates do not include mining or processing losses. However, for many studies, it is not feasible to take such losses into account.

9.1.2 Ore Interval

An ore interval is represented by one or more contiguous samples characterized by mineral grades or values which are generally not less than some pre-assigned cutoff (Section 9.1.4). Samples below cutoff may be included in an ore interval only under certain conditons (Section 9.1.4), however, the average grade of the total interval must still be equal to or greater than the cutoff.

The interval is assumed to be linear and roughly perpendicular to the local mean plane of the mineral deposit. In addition, it must be at least equal in thickness to the minimum mining thickness. An ore zone is the actual or inferred projection of ore from one identified ore interval to another.

9.1.3 Minimum Mining Thickness

The minimum mining thickness is generally considered as the minimum thickness of material which can or will be physically be removed by the anticipated mining method; it is determined both by the capability of availabile equipment and methods as well as by cost considerations. Generally, the "thinner" the minimum mining thickness, the more expensive the mining cost.

The minimum thickness may also be affected by mine safety considerations. In large open pit operations, the minimum mining thickness is usually not less than 2 feet. Underground workings are usually 8 to 10 feet in height. However, underground mining of thin, high-grade zones may be carried out by "split" shooting; first blasting out and removing either the ore or the waste and then removing the other. This, of course, is more expensive than blasting the entire face and removing the all the material together.

The determination of minimum mining thickness should somewhat reflect the thickness of the available sample intervals on which the ore reserves estimate is based. If samples are, say, a minimum of 10 feet in thickness, it is not very practical to try to determine ore intervals at a minimum mining thickness of 2 or 3 feet.

In any case, the minimum mining thickness is one of the most critical parameters in any ore reserve estimation. For programs SCOR and RESUV, it specifically represents the minimum thickness which can be attained by an ore interval. In ORSAC, it is the thickness to which samples are combined to form the elements of the sample population to be statistically analyzed.

9.1.4 Ore Cutoff

The term "cutoff", as used in URAD, is a preassigned or calculated mineral grade or value, below which sample intervals are generally not included when delineating an ore interval. "Value" is defined here as the estimated dollar

value of the contained or recoverable mineral represented by a sample (or an interval or an entire deposit). Intervals of material representing grades (or values) below the cutoff are not included in an ore interval unless:

1. They are required to bring the interval up to minimum mining thickness (Sections 9.1.3 and 9.1.8.1).

2. They lie between ore intervals, but are so thin that they could not be physically or economically separated from the ore during the course of mining (Section 9.1.7).

3. They are included as upper and/or lower dilution (Section 9.1.8.2).

The RESUV and SCOR programs provide two basic methods for assigning cutoffs. In the ORSAC program, cutoffs are not assigned. Reserves are calculated for a spectrum of grade cutoffs, which are not determined by economic factors, and the reserves at each cutoff are based on a statistically-derived gradetonnage distribution of an entire deposit; the desired cutoff is determined independently of the program, and then the ORSAC results are checked to determine how much ore is available at that cutoff.

9.1.4.1 Value-vs-Cost Cutoff

In programs RESUV and SCOR, a cutoff grade or value may theoretically represent the break-even point in cost versus value (of contained or recoverable mineral) at which material may be extracted, carried to some given location, and, optionally, processed.

This is based on the reasoning that it is not generally feasible to extract a quantity of material which, when delivered to the point at which payment is made, will not be at least equal in value to the total cost of delivery. This is called a "break-even" or "marginal cost" cutoff principle and is utilized in all cases (in URAD) when cutoffs are determined by cost versus value. Programs RESUV and SCOR provide the option of calculating costversus-value cutoffs based on economic data supplied as program input parameters.

9.1.4.2 Arbitrary Cutoff Grade

An "arbitrary" cutoff is one which is simply assigned without any neccessary regard to economic relationships. Programs RESUV and SCOR provide the option of submitting arbitrary cutoffs.

Additional discussions of cutoff are included in the Sections describing the individual ore reserves programs.

9.1.5 Overburden Waste

Overburden waste is only considered in the SCOR open pit mode.

The term "overburden waste thickness" (or simply "overburden thickness") is used to define the distance from the ground surface to the top of the upper most ore interval defined in a sample set. "Direct overburden" is the mate-

DEFINITION OF TERMS

rial, directly overlying the area defined by a block, which must be removed during an open pit operation. In a SCOR open pit RUN, it is assumed that the implied perimeter of the block area represents the base of the pit. The direct overburden, in cubic yards, is calculated by multipliying the average overburben thickness by the block area (not the "ore area") and dividing by 27 - even though the average overburden thickness is based only those sample sets having ore intervals.

"Total overburden" includes the direct overburden plus the backslope overburden (see below).

9.1.5.1 "Backslope Overburden"

The term "backslope overburden" refers to the additional material which must be removed to maintain a proper pit wall slope. In a SCOR open pit RUN, the "pit slope angle" refers to the acute angle formed by the intersection of the base of an open pit and the slope of the pit wall, and the "pit perime ter length" is the length of the outside perimeter of the area of the given block. SCOR uses these two variables, in conjunction with the calculated average depth to the bottom of the lowest defined ore intervals, to estimate the cubic yards of backslope overburden.

The backslope calculation includes the additional excavation needed for a ramp which is 40 wide and slopes down at a 10 degree angle from the ground level.

The backslope approximation function is developed as follows:

BKSLPF(A,Y,P) = (V1 + Vc) / 27 where, V1 = volume along the (linear) length of the perimeter, Vc = volume needed to account for the net perimeter curvature. V1 = P x 1/2 * Y * X Vc = 1/3 * 3.14159 * X**2 * Y A = pit slope angle (degrees) P = perimeter (feet) along base of pit (i.e perimeter of block area) Y = average total depth (feet) to base of ore S = length of ramp = Y / sin(10.) feet X = (Y x cot(A)) + (40 * S/P) (feet)

9.1.6 Mining Waste

A mining waste interval, as defined herein, represents material below ore cutoff which lies between ore intervals ("inter-ore") and must be removed in order to mine the ore; mining waste is calculated in tons. Two types of waste ("typel" and "type2") are defined in the SCOR program and they have different connotations depending on whether an open pit or underground operation is being evaluated.

Waste materials removed during primary development (i.e. shaft sinking, haulageway construction, and other "access" operations) are not included as mining waste.

9.1.7 Minimum Waste Thickness

The minimum waste thickness is the minimum thickness of material below ore cutoff which can be physically separated from ore intervals during mining operations.

Ľ

9.1.7.1 Underground

For underground operations, the typel mining waste is that material which must be removed (when mining thinly separated ore intervals) because it is not sufficiently competent to stand in place even with support, or is cheaper to remove than support. The typel waste ("stoping" waste) minimum thickness may be less than the minimum mining thickness. An upper limit must be placed on the typel thickness; this limit reflects the minimum thickness of material, between more or less horizontal ore zones, which would be left in place (with or without support) during ore extraction. The type2 designation is not used.

9.1.7.2 Open Pit

For open pit operations, the mining waste is defined as any physically separable material between ore intervals and may, optionally, be subdivided into type1 and type2 for costing purposes (Section 9.2.4.6).

The minimum typel waste thickness is automatically the same as the minimum mining thickness. If no type2 waste category is requested, then all interore waste is categorized as typel.

However, when a "minimum type2 waste thickness" is assigned, mining waste less than this thickness (and equal to or greater than the minimum mining thickness) is placed in the "type1" category, and that greater than the minimum type2 thickness in "type2". The type2 waste option allows the charging of lower waste removal costs to thick zones of inter-ore waste.

Example: if a deposit to be mined by open pit methods consists of 3 ore zones, with the uppermost zone 200 feet below the surface, the middle zone 10 to 15 feet below the first, and the lowest 2 to 6 feet below the middle zone, then very large-scale earth-removal methods and equipment would be used in stripping (at relatively low cost) the overburden to the first ore zone, while the cost for removing waste between the lowest two zones would be close to the mining cost. The cost for removing the material below the upper zone would probably be somewhere in between the two extremes.

The decision to treat type2 waste (as defined above) as an additional operating cost, as opposed to a primary development (capital) cost, is open to question. It depends largely on the mine operator's method of handling mine expenditures and would mainly be affected by tax considerations.

DEFINITION OF TERMS

In ORSAC, the minimum mining waste thickness is implied as the minimum mining thickness as a result of the method used to determine the sample population.

9.1.8 Dilution Thickness and Grade

Any cutoff mineral grade or value as used in the URAD ore reserve programs theoretically represents some minimum limit below which, for some reason, it is not desired to transport and process the materials comprising the given mineral deposit (see also Section 9.2.4.6.). However, during the ore extraction process, it is not always possible to exclude all the "sub-cutoff" materials, some of which may become mixed with the "true" ore and cause the resulting grade of the total extracted material to be lessened, or diluted.

Two types of dilution are considered in the URAD reserves programs. For both types, ore intervals are tested after (as well as before) the diluting material is added, and, if the diluted interval does not meet cutoff requirements, that interval is no longer considered as an ore interval.

9.1.8.1 Diluting to Minimum Mining Thickness

In both the SCOR and RESUV programs, if one or more consecutive sample intervals meet cutoff grade, but their combined thickness (Tc) is less than the minimum mining thickness (Tm), then the difference (Td=Tm-Tc) is added to Tc at a grade which is called the "dilution grade" (Gd), and the average grade (Gm) of the total interval (Tm) is determined by:

Gm = ((Tc x Gc) + (Td x Gd)) / Tm

where,

Gc is the average grade of the initial interval Tc

In program RESUV, the diluting grade (Gd) is an arbitrary value submitted as a program input parameter. In SCOR, it is determined by the actual grade of samples adjoining (above and/or below) Tc.

9.1.8.2 Mining Dilution

In program SCOR, the option is also provided to add, both above and/or below defined ore intervals, a specified thickness of sub-ore-grade material which represents the average thickness of materials which are likely to be unavoidably mixed with the ore and cause dilution of ore interval grades in spite of all reasonable precautions. This type of dilution is generally caused be either the type of mining method employed or by the physical characteristics at the boundary between the ore host rock and the adjoining waste material.

Some workers prefer the method of assigning an arbitrary dilution grade, along with an arbitrary percentage which will be prorated to the total reserve after it is calculated. Example: with arbitrary dilution of 10 percent at zero grade, a reserve of 100,000 tons of ore at 0.20 %U308 would be diluted to 110,000 tons at 0.192 %U308. While this method is simple and is feasible in localities of long time mining experience, it is also sometimes

DEFINITION OF TERMS

used as a "hedge" against the possibility of strong recrimination if the eventual ore production grade is lower than that of the original reserve estimate. If the latter situation arises frequently, it is better, in the long run, to find out the actual cause rather than to gloss over it.

9.1.9 Protore

During the process of removing overlying material to reach targetted ore intervals in an open pit operation, there may be a relatively low additional cost for stockpiling (for possible future processing) some of the materials which contain mineral values below ore cutoff grade, as opposed to simply treating such material as complete "waste". The relative costs involved depend on the removal methods and waste destination.

The SCOR open pit analysis provides an option to calculate the amount of material ("protore") which may be available at grades below the ore cutoff grade, but is equal or greater than some other specified grade, termed the protore cutoff grade.

Protore intervals must meet the same minimum-mining-plus-dilution thickness requirements as ore intervals.

Protore cutoffs, like ore cutoffs, may be arbitrary or based on cost vs price considerations; this is further described in Sections 9.2.3 and 14.

9.1.9.1 Protore Processing Cost and Percent Recovery

When the protore option is specified, the estimated future cost per ton and percent recovery for protore processing must be entered. These factors are likely to differ sharply from those associated with the processing of the ore estimated at the higher cutoffs.

9.1.9.2 Treatment of Protore in SCOR

In the SCOR program, protore is considered as simply as waste material which may have some additional value. The in-place and extractable tons of protore are calculated and listed, as well as the potential net value of the recoverable protore pounds U308 determined on the basis of the protore processing costs and recovery rates (Section 9.1.9.2). However, these do not enter into the final reserve economic analysis. The cost of removing protore is assumed to be the same as that for typel waste (Section 9.1.7.2).

9.1.10 Mine Extraction Losses

In most mining operations, there is some loss of ore due to unforeseen inac cessibility or, in the the case of underground operations, the neccessity of leaving ground support which cannot be recovered. The percentage of the total estimated in-place reserve which is expected to be eventually extracted from the ground is termed the "percent extraction".

9.1.11 Ore Processing Recovery

If an ore reserve is to be considered as "recoverable", then the percentage of the total contained mineral which will be available after processing must be estimated. This is termed the percent recovery from ore processing, or simply "percent recovery".

9.2 ECONOMIC PARAMETERS

9.2.1 Integrated Versus Independent Operations

An operation is "integrated" if both mining and processing are both considered as part of a single integral operation, and the end product is uranium in concentrate. In an integrated operation, the mininig and processing functions and facilities are usually controlled by a single organization. Cutoff calculations and value of ore are based on recoverable U308.

An operation is "independent" if the mining activities are completely sepa rate from the processing function as, for example, when a mine operator sells ore to a processing plant controlled by a different organization. In this case, the end product is usually considered uranium in ore and value and cutoff computations are performed accordingly. Processing costs and recoveries are generally not considered for independent operations.

9.2.2 Operating Versus Capital Costs

9.2.2.1 Operating Costs

"Operating" costs are those which must directly be applied to each ton of ore which is handled and are expensed accordingly. Operating costs include (but are not neccessarily limited to) those for labor, materials, power, fuel, royalties, insurance, and local ongoing adminstrative, technical, and clerical activities.

9.2.2.2 Capital Costs

"Capital" costs are those which must be essentially expensed before actual ore mining and processing take place or in the early phases of production. Such costs include (but are not limited to) those for property acquisition, exploration, construction of mine and processing facilities, and activities neccessary to gain access to the ore, preparatory to mining, such as shaft sinking and mine primary development.

Aside from good mine accounting practice, the primary reason for sharply separating these two types is for investment and tax purposes; the timing of the capital expenditures strongly affects the eventual profitability of a mining operation.

Capital costs are generally applied "in toto" to an entire operation, and then the breakout of cost/ton of ore for the various cost elements is made. In SCOR, the capital costs should be determined by: 1) running a preliminary ore reserves analysis on a prospective operation; 2) determining the magnitude of the operation and size and total cost of required facilities, 3) di-

DEFINITION OF TERMS

viding the total cost for each capital-cost element by the estimated reserve tons, and; 4) entering the capital costs on a cost-per-ton basis (see also Sections 9.2.2.4 and 9.2.4, and Section 14.3 - capital cost entries).

9.2.2.3 Mine-Mill Reclamation, Shutdown Costs

The methods used for expensing costs for shutdown and reclamation of mine and processing facilities, as well as mill tailings, vary widely. Such costs may be included as operating costs, capital costs, or partly as both. It is up to the judgement of the ore reserves analyst to place them in the most reasonable categories. They may be included in operating categories such as direct mining, applicable indirect mining, or processing, or in appropriate capital cost categories.

9.2.2.4 SCOR Cost Elements

The cost elements described in Sections 9.2.3 through 9.2.5 are those which are specifically required as input parameters to the SCOR program. These elements have been somewhat simplified for the URAD system but have been established so that any applicable costs may be included in one of the elements. In program RESUV, total operating costs are as a single value; capital costs are generally not included.

9.2.2.5 Preliminary Estimates

Mineral production costs are, of course, a function of the size and scope of the mining and processing operations. The URAD ore reserves programs do not have the capability of carrying out the type of analysis necessary to deter mine the optimal size and capacity of production facilities and associated production costs. Such a computer model requires a degree of size, complexity, and availability of data which would be several orders of magnitude greater than URAD.

However, by first using the URAD programs to obtain preliminary reserves estimates for a given deposit, the scope of operations may be more clearly defined, and then additional RUNS may be made using cost data determined as a result of the preliminary analyses.

9.2.3 Operating Costs

The following operating costs are identified in the URAD system and are used in cutoff determinations. All unit costs are expressed in dollars per ton of material (ore or waste) handled.

1. The "direct" mining cost involves all operations necessary for extracting ore from the ground and loading it preparatory to transportation, or "haulage". The amount of transportation cost included in the direct mining cost varies according to the type of operation. In an integrated operation where the processing facilities are close to the mine, the direct mining cost may include the moving of ore to the processing site.

126

2. The "haulage" cost involves any required costs of transportation of ore from one specified point to another (unless such costs are already included in the direct mining cost.

3. The "royalty" cost is the amount of money which must be paid to a third party for production of the uranium. Methods of determining royalty pay ments vary considerably and are frequently quite complicated. Most are based on the amount of mineral in ore or the amount of mineral produced.

For the URAD programs it is necessary to make an estimate of the average royalty that will be paid over the life of the operation and then convert this in terms of average dollars per ton of ore mined. Since royalties are generally most affected by the average production grade over a reasonable time period, preliminary reserves analyses are useful to estimate the aver age grade of various blocks (Section 9.2.2.5); these grades may be then used as a basis for esimating the royalties.

4. The "ore processing cost" includes all ongoing costs for processing the ore to obtain uranium in concentrate.

5. "Applicable Indirect" costs include any other costs which may be directly charged to the mining and or processing of the ore. These may include local production taxes and any mine and/or processing plant reclamation expenses which are to be charged as operating costs.

9.2.4 Capital Costs

The following capital costs are specifically identified in the SCOR program and must be expressed in dollars per ton of ore. In order to do this, an estimate must first be made of the size and scope of the projected production operations (Section 9.2.2.2 and 9.2.2.3). If capital cost data are not available or not needed for a SCOR RUN, they may be entered as zero values.

1. "Mine plant and equipment" costs are self-explanatory.

2. "Underground primary development" includes all costs required to gain access to ore preparatory to underground mining. This is only used in SCOR underground RUNs.

3. The "overburden removal" cost is considered a primary development cost and is treated somewhat differently (in program SCOR) than the other capital costs. Since the quantity of overburden which must be removed is directly calculated by the program, the cost is expressed in dollars per cubic yard and the total cost for overburden removal is calculated within the program on that basis. This cost element is used only for open pit RUNS.

4. "Processing plant" capital expenses are self-expanatory.

5. "Other" capital expenses may include any capital expenses which are not specifically defined above but which the user may desire

to include, such as property acquisition, exploration, mine and processing site preparation, and any mine or processing reclamation activities which are to be treated as capital expenditures.

9.2.4.1 Inter-ore Mining Waste-Costs

Mining waste is defined in Section 9.1.6, and the costs for mining waste removal are discussed separately here because there are several methods of treating such costs. Program SCOR provides options for charging costs using either of the methods described below. Mining waste removal costs are expressed in dollars per ton

1. The mining waste costs are sometimes included in the direct mining costs, especially when there is sufficient backlog of experience, in mining a given type of deposit, to estimate the average amount of waste which will be removed for every ton of ore mined. In this situation the waste cost is said to be "pro-rated" to the mining cost. In estimating costs for "split- shooting" underground operations (Section 9.1.3), for example, one method is to estimate the average ratio of waste to ore assuming mine workngs of, say, 8 feet in height; calculate the total cost for removing both ore and waste; use a small (one to two feet) mininum mining thickness; and consider the ore + waste cost as direct mining cost. Example: if the ore-to-waste ratio is one ton of ore for every 3 tons of waste, and the ore mining cost is \$50 per ton and waste removal is \$10 per ton then the direct mining cost for ore mining would be charged at \$80 per ton.

When waste removal costs are prorated, they are implicitely included in cost vs value cutoff calculations.

2. In other situations, it is preferred to separately estimate the quantity of mining waste and charge its removal as a independant cost element. In underground operations, the cost will depend primarily on whether the waste must be brought to the surface or whether it be simply moved into "mined out" portions of the underground workings.

Similarly, in open pit operations, mining waste removal costs depend largely on the distance that the waste must be moved as well as the size of equipment used. In addition, where ore zones are separated by relatively thick waste zones ("type2' waste, see Section 9.1.7), it is generally chea per to remove such waste material than that (typel waste) which is between closely separated ore zones. An identified typel waste mining cost should always include the cost of moving it to its destination.

When costs are assigned to specific waste types, such costs are not included in the cutoff calculations but are applied to the economic evaluation of the reserves as a whole.

When the SCOR protore option is in effect, the cost/ton for mining the prot ore is included in the protore cutoff calculation (if the latter is deter mined by cost vs price) and the typel mining waste removal cost is used as the protore cost.

128

<u>10.0 INTERACTIVE ENTRY</u>

10.1 GENERAL PROCEDURES

Each of the programs require some "interactive" (1/A) entry of program para meters. For every 1/A entry, a data request message (termed a "prompt") will appear and this prompt will clearly indicate the type of data needed. The prompt will be immediately followed by an arrow (" -> ") or one or more "framers", which are dashed line segments (---.--) or (----.-), etc. Entries are made simply by using the console typewriter to key in the appropriate response immediately to the right of the arrow or (approximately) under the framer(s). Some prompts only require a "Y" (for "yes') or a "N" (for "no") response. When the complete entry has been made for a prompt, the RETURN key is pressed.

The arrow is used when data consist of either a numeric integer code, a Y or N response, or an alphanumeric name. Framers are used for decimal numbers or for multiple entries. A multiple entry is one where several values are requested for a given prompt.

The framers will indicate the maximum number of significant digits and the maximum number of places to the right of the decimal point (if applicable) to which numbers may be entered. They will also have a reference heading if such is appropriate. Examples are shown on Figure 10.1. Note that the numeric entries need not be directly under the framers since the latter are used primarily to apprise the user-operator of the general form of entry as well as of how many entries are required. Even if the framer, as well as the guide text material, indicates a certain number of digits to the right of the decimal point to which a particular numeric value may be entered, such numbers need not be entered if not applicable. For example, a cost value of thirty dollars may be entered as "30" instead of "30.00". All significant digits to the left of the decimal must, of course, be included.

Each prompt indicates exactly what options are available for a given entry (or entries). The values are either specifically identified or a range of of values is provided in brackets. Example "(>0, <50 ft)" indicates that the entry values must be greater than zero but less than fifty (feet). Entries outside the specified range or mistakenly-entered alphabetic characters in numeric fields will be caught and the opportunity will be provided for reentering the values. A few basic guidelines are suggested:

1. For multiple entries under "framers" be sure that each numeric value is separated by at least one blank space, but do not use any other "separators" such as a comma (,).

2. Do not enter any numeric value with "imbedded blanks", i.e. the number "one thousand five hundred and sixty two point two five" must be "1562.25", not "1562.25", or "1562.25" or "1562 . 25", etc. Any blank within a numeric value will cause it to be read by the computer as 2 numeric values.

3. For numeric entries use only numeric digits and a decimal point, if required. Do not use commas (,), percent signs (%),

INTERACTIVE ENTRY

ī.

1

+ 1]

ļ

dollar signs (\$), or any other non-numeric character, including plus (+) or minus (-) signs. No negative entries are required for any of the URAD interac tive prompts.

4. Do not use quotes (') when entering file names or other alphanumeric data interactively. Keep in mind that the URAD procedures for interactive data entry differ from those used in establishing the "UCON" file and edit instuctions discussed in Section 7.0.

5. There is no way for the programs to determine if file names are correct or not. Therefore, after a file name is entered, the opportunity is provided to examine the name and re-enter it, if it is incorrect.

6. Keep the console keyboard in the "CAPS LOCK" mode during I/A entry. The URAD system assumes that any alphabetic letters in data will be uppercase ("A", not "a").

7. Most "single-digit code" entries do not provide the option of re-entry if they lie within the range of acceptance; such entries should be made with care. "Y" or "N" responses fall in this category. Any numeric data entered under framers are automatically displayed when they fall within their accep table range; if an erroneous number is seen by the operator, the entire set (defined by the given framer(s) may be re-entered.

INTERACTIVE ENTRY

"1" for detailed analysis; "2" for summaries only:-> " MUST BE Y types) GR & (no); TRY AGAIN (Do you want BLOCK RESERVES calculations? [Y/W]:Y TYPE OF OPERATION; enter 1 for OPEN FIT, 2 for UNGERGROUND->1 THIS RUN IS FOR AN OPEN PIT OPERATION. Enter NUMBER OF CUTOFFS to be run (1-5)-)5 Is GRADE CUTOFF to be determined by PRICE vs COST? IY/NJ-NW Enter ORE CUTOFF GRADE ()0, (2.0010309): .050 .060 .070 .080 .090 IF CK, ENTER Yes; IF NDT, ENTER NO FOR ANDTHER TRY.->Y is operation INTEGRATED (processing facilities includec)? [Y/N]->Y Enter PROCESSING COST in \$ per ton one 100, (\$200ptl: 2 1 25.00 26.00 27.00 28.00 29.00 IF OK, ENIER Yes; IF NOT, ENTER NO FOK ANOTHER THY.->> Enter PROCESSING RECOVERY in PERCENT (35, 1001): YOUR ENTRY FOR & PROCESSING RECOVERY IS AS FOLLOWS: 90.00 90.00 91.00 91.00 92.00 IF DK, ENTER Yes; IF NDT, ENTER NO FOR ANOTHER TRY.->Y Enter PRICE PER POUND USD8, 100, (#200 PER LB. USD8)1: 2 3 4 5 s---,-- s---,-- s---,--1 \$---.-30 30 30 30 TO 1 INVALID CHARACTER(S) IN FIELD; TRY AGAIN ! Enter FRICE PER FOUND 0368, 100, 44200 PER LE. 030811: 2 3 4 5 \$---,-- \$---,-- \$---,--\$---- \$--30 30 30 30 30 YOUR ENTRY FOR PRICE PER POUND USDE IS AS FOLLOWS: 30.00 30.00 30.00 30.00 30.00 IF DK, ENTER Yes; IF NOT, ENTER YE FOR ANOTHER TRY.->Y

FIGURE 10.1 EXAMPLE OF INTERACTIVE PROMPTS (FROM SCOR PROGRAM)

131

11.0 GENERAL PROCEDURES FOR RUNNING THE RESERVES PROGRAMS

There are three ore reserves programs in the URAD system - RESUV, ORSAC, and SCOR. These are discussed in Sections 12.0, 13.0, and 14.0, respectively. The description of each program includes:

- 1. General concepts and operations of the program
- 2. Optional features
- 3. How to run the program, including interactive entry procedures
- 4. Examples of output.

11.1 PRELIMINARY STEPS

Each program is run on a block-by-block basis and must access a UCON file (Section 7.0) to process the appropriate sample data. Before running any reserve program, the following procedures should be implemented. The sequence of the following steps may depend up on particular circumstances. For example, it is assumed the work on steps 2, 3 and 5 will have been carried out well in advance of the reserves analysis.

1. Review the applicable sample data, and using whatever means available - preferably sample or drill hole location maps, and cross sections - outline and compute the area of each block (Section 7.1) for which a reserve estimate is desired. For SCOR open pit RUNs which will request a final reserve estimate and economic analysis, the length of the perimeter of the pit base (Section 9.1.5.1) must be measured (or estimated).

2. Review the sample sets to be included in each block and insure that they are available on one or more "intermediate" UDAT files. If not, run program URDAT (Section 8.0) to select the necessary samples from the appropriate "primary" (basic) UDAT files and to create the intermediate file(s).

3. If the required sample sets are not in the primary file(s), they must of course be entered (Sections 4.0 through 6.0) before any programs can be run at all.

4. Before establishing a UCON file, examine the sample sets to determine the feasibility of using area number, hole number, and/or coordinate control for selecting the assay sets to be included in each block.

5. If the uranium deposit is "multi-horizonal", and it is desired to analyse zones separately, determine which zone(s) are to be included within each block and how samples within such zones are to selected from the sample sets. For relatively flat-lying deposits, elevation control (Section 7.6.3) can be utilized. For erratic or steeply-dipping deposits, lithologic con trols (Section 7.6.4) are more efficient, providing that lithologic data are included with the sample sets and that the breakdown of lithologic is ade quate to select the desired zones. 6. Determine if any of the samples need to be corrected for disequilibrium (Sections 3.4 and 7.6.6) If so, obtain the equation form and necessary coefficients. If these are not available it will be necessary to derive them before any further analysis is carried out.

7. Prepare a UCON file (Section 7.0) and give it the name of the standard default file "UCON' or some other file name. The block identification rec ords (Section 7.3) contain the block number, the area, and a title, if des ired. Make sure that each file identification record (contains the exact name of the intermediate file on which the required data resides, and that names for files which are not on the default disk drive include the device names ("A":, "B:", etc.).

8. Review the standard and optional control parameters under which the prog ram is to be run. These will be requested interactively and it is useful to have them already written down, especially when first learning to use the program. The standard control parameters are described in Section 11.2.

9. Review Section 8.2 and determine where the output is to be generated. If output is to be on a floppy disk, review the files which may already exist on the disk. If there is any material on file OUTPUT that should not be wiped out, copy it to another file, or use a different print-output file name. (File OUTPUT is the "default" file for all print-output from the programs. LPTI is the name submitted for direct output to the printer.

10. If it desired to test just a few sample sets, consider placing a limit on the number of sample sets or output lines.

11. Review Section 10.0 for the methods of the interactive data entry.

11.2 RUNNING THE PROGRAMS - STANDARD INTERACTIVE ENTRIES

The following standard entries are not all necessarily listed in the order in which they occur during program execution.

1. To execute any program, simply enter the name of the applicable reserves program to the right of the systems prompt (example "C:>" and press return.

2. A request will be made as to whether a printout of the assay data on the current intermediate UDAT file is desired. This option should not be taken unless there is some question on the data and the user-operator wishes to determine what data are on the intermediate file(s) being processed. When a considerable number of sample sets are involved, then it is wise to put a limit on the number of lines to be output. See Section 11.3 for additional information on the contents of the intermediate data file.

3. A request will be made for the name of the file on which the output is to be generated.

If results are to be output directly on the printer, make sure that the printer is on and that the paper is properly positioned at the top of a fresh page; enter "LPTI" and press RETURN.

If results are to entered on the standard default file "OUTCON", simply press RETURN (do not enter any characters).

If results are to be entered on some file other than OUTCON, check once more to be sure the file name is correct; if the output file does not reside on the default disk drive, make sure that the device name ("A:", "B:", etc.) is included.

Enter the file name, and press RETURN. An opportunity will be provided to check the file name and re-enter it, if desired.

4. A request will be made for the name of the applicable UCON file. If the UCON control data are on the default file "UCON", then simply press RETURN. If on some other file, enter the file name and press RETURN. Observe the device name precautions. An opportunity will be provided to check the file name and re-enter it if desired.

5. Additional standard initial requests will be:

-> Print-output control options for pagination, character width, and line spacing. These are essentially as described for program URDAT in Section 8.6.2; any variations are self-explanatory. For programs RESUV and ORSAC, the only option is paper width; if less than 14 1/2 inches, printing will be compresed.

-> Detailed sample set summary listing. The short summary lists the number of holes included, those rejected, the number excluded by edit, the number meeting cutoff, etc. The full (detailed) summary lists the actual sample set identification numbers for each category.

-> Name of user or operator (up to 20 characters).

-> Date (up to 8 characters; the forms XX/XX/XX or XX-XX-XX are recommended, but any characters are allowed).

-> Title (RUN description) of up to 75 characters which will be used on output headings.

-> Each program will then have a series of requests for RUN program control and program parameters: these are are described under the sections for the appropriate programs. When first running the programs, it is wise to list the prospective options and data entries on paper before executing.

11.3 CONTENTS OF THE INTERMEDIATE DATA FILE

In Section 8.5.2, the data elements and formats of the intermediate UDAT files are described. When the option is taken to "dump" the data from an intermediate file during an ore reserve RUN, the data from each sample set

are listed as shown in Figure 11.1, which shows output from a uranium-only sample set and a uranium-vanadium set.

11.3.1 Intermediate Data Header Output

The sample-set header data are dumped in three lines. Each variable is preceded by an alphanumeric abbreviation which defines the record. These are explained in Section 8.5.2.2 and will not be repeated here. Most of the data have been discussed in detail in Sections 4.0 through 6.0. The area, sample-set, and property codes (A#, H#, and P#) are placed within double asterisks ("**").

Some data need further explanation, especially if they are affected by any edits which may take place when running URDAT.

"DSM", the total depth sampled, is always the same as the original value entered for "depth sampled" in either barren or non-barren gamma-log data. If the original data were non-gamma-log data, it is the depth to the bottom of the last sample interval. For any barren sample-set which originally did not have any entry for depth sampled, it is set to zero. For non-barren gamma-log data which originally did not have an entry for "depth sampled", DSM is set to the bottom of the last (lowest) interval, and then that value is set to negative. Any DSM which is zero or negative is "undefined".

"DPO" is always the depth from the original collar elevation to the top of the first sample interval. For barren holes, it is set to zero.

"EL" is always the collar elevation of the sample set.

"PE" is always set to the elevation at the pit surface if a "depth-to-pitbottom" was originally entered in the sample-set data. If not, it is set to -9999 (undefined).

"E1" is always initially set to "EL" in URDAT. If a sample set is subjected to a lithologic and/or elevation edit, E1 is reset to the top of the "editinterval". The edit-interval is that portion of the original sample set which remains after the edit is carried out. E1 is considered as the "working" elevation of a sample set.

"E2" is always set to the elevation implied by EL and DSM, if the latter is positive. If DSM is undefined, then E2 is set to -9999 (also undefined).

Whenever a sample set subjected to a lithologic and/or elevation edit, E2 is set to the bottom of the edit-interval if the latter is defined. If the bottom of the edit interval is undefined, then E2 is left (or set) to -9999.

"DPC" is originally set to DPO, but if a lithologic and/or elevation edit cuts out any of the upper portion of the sample set, it is reset as the depth from El to the top of the first sample of the edit-interval.

"IC2" always reflects the status of the sample following the most recent edit.

Note: When SCOR is run in the open pit mode, with no edits, the working elevation of any sample set having a defined pit elevation

is automatically set to that pit elevation, and any sample intervals originally above that position are deleted.

11.3.2 Sample Interval and Lithologic Data

Sample interval data are listed horizontally and sequentially, from left to right. There are 6 intervals per line for uranium-only data, with each interval represented by depth and grade %U308. There are four intervals per line for uranium-vanadium data with each interval represented by thickness, grade %V205, and grade %U308.

The actual grades are the same as those appearing in the URDAT output listing, but may sometimes appear to differ by 0.01 %U308 because of output roun ding problems; they are only listed to the neares hundredth of one percent.

Any lithologic codes and depths are also listed horizontally and sequentially from left to right.

(Example of uranium - vanadium data) { "C13"=V "C14"=1 "NDAT"=4 "IQC"=4 "IDQ"=0 \$\$*"A\$-H\$-P\$"=VVV TEST 2 VDATA \$\$ "NC-EC"= 6000. 5000. "EL-PE"=11000.510850.5 "DPD"= 400.0 "DSM"= 465.5 { "WTB"= 100. "IC2"=1 "E1-E2"=11000.510535.0 "DPC"= 400.0 "NA-NL"= 20 0 }

1	FT-2V20	5-2030	8(1),((2), (3)	ETC; {	SEQUEN	TIALLY	FROM LE	FT TO	RIGHT.		
ł	1.00-	1.04-	.051	2.00-	1.01-	.021	5.00-	2.00-	.04:	2.00-	5.55-	.10
ł	2.00-	.50-	.15	2.00-	2.00-	.021	10.00-	.05-	.01:	.50-	1.00-	.201
ł	5.00-	4.00-	.041	4.00-	5.55-	.501	2.00-	.02-	.021	2.00-	2.00-	.011
	10.00-											
ł	2.00-	.10-	.021	2.00-	2.00-	.551	10.00-	.20-	.011	.50-	.20-	.02!

("Barren" sample set) | "C13"=2 "C14"=0 "NDAT"=1 "IQC"=7 "IDQ"=0 \$\$"A\$-H\$-P\$"=AAA TESTA1 URDAT \$\$; | "NC-EC"= 5000. 5000. "EL-PE"= 7000.5 6850.5 "DPD"= .0 "DSM"= .0 ; | "WTB"= 100. "IC2"=1 "EI-E2"= 7000.5-9999.0 "DPC"= .0 "NA-NL"= 0 0 ;

(Example of uranium-only data) : "C13"=A "C14"=3 "NOAT"=3 "IQC"=4 "IDQ"=0 \$\$"A#-H#-P#"=CCC TEST 6 URDAT \$\$: "NC-EC"= 7890. 9198. "EL-PE"= 7211.0-9999.0 "DPO"=1583.0 "DSM"=5185.0 { : "WTB"= 100. "IC2"=1 "E1-E2"= 7211.0 2026.0 "DPC"=1583.0 "NA-NL"= 83 0 {

ł	FT-ZU308(1),	FT-IU308(2),	ETC; SEQUENTIA	illy from Left		
-1	.5001	.50001	.50011	.5001	.5002	.50021
1	.5004:	.50111	50091	.50001	.50021	.5001
1	.5003!	.5002!	.5001	.50011	.50041	.50131
ł	.5093	.50461	.50671	.50~ .511	.5001:	.50071
ł	.5010	.5009	.50221	.50421	.5036	.50381
1	.5025	.50091	.50041	.5006	.5002:	.5 003
1	.5003	.5003	.50061	.50361	.50- 1.88:	.50- 2.95
ł	.50- 3.45	.50- 3.42	.50- 3.731	.50- 1.57!	.50441	.5005:
ł	.50001	.50011	.50011	.50011	.50011	.50001
ł	.50~ .01	.50001	.5001:	.50031	.5011	.50071
1	.5052	.50931	.50561	.5083!	.50- 1.56	.50- 1.06
ł	.50- 1.30:	.50- 1.40	.50- 1.481	.50- 1.37:	.50- 2.221	.50631
ł	.50261	.50- 1.52	.50- 1.43!	.5000:	.5013	.50051
1	.5010:	.50001	.50031	.50001	.5001	

FIGURE 11.1

PARTIAL LIS	STING FROM	"DUMP"	OF	AN	INTERMEDIAT	E UDA	T FILE

<u>12.0 PROGRAM RESUV</u>

12.1 GENERAL CONCEPTS AND OPERATIONS

Program RESUV (Reserves for Uranium and Vanadium) is designed to calculate uranium and, optionally, vanadium reserves for predetermined underground blocks. The blocks are first outlined as described in Section 7.1. After blocks, block areas, and associated UDAT intermediate data files have been defined in the appropriate UCON file (Section 7.0), RESUV is then executed and all control parameters are read interactively.

The parameters include: title of run, minimum mining thickness, minimum waste thickness, uranium and vanadium dilution grades, tonnage factor, the type of cutoff option desired, and depending on this option, either uranium grade cutoff (s) or mineral value (s) and production cost (s).

RESUV then processes the sample data and calculates reserves for all blocks, one cutoff at a time. There may be up to seven cutoffs at which reserves are calculated (for each block) depending on the control parameters submitted. The cutoffs are based on either arbitrary uranium grades or production cost versus contained mineral value.

For each cutoff, the procedures are as follows. Each sample set chosen by the UCON controls for the given block is analyzed to determine the thickness of "ore" represented by the set. "Ore" (Section 9.1) is defined as material which will need minimum thickness and cut- off requirements. Samples are grouped into "preliminary" intervals which may consist of one or more samples meeting grade cutoff requirements.

If such zones do not meet minimum mining thickness requirements, then sufficient material is added (at the dilution grades) to bring the interval up to minimum thickness, such zones are further tested against the cutoff and if they meet cutoff requirements, they are included as "ore"; otherwise they are rejected. No additional dilution is made.

Example: if grade cutoff, minimum mining thickness, and uranium dilution grade have been submitted as 0.20 %U308, 8 feet and 0.02 %U308 respectively, an interval of 6 feet @ 0.25 hundredths would be diluted to 8ft. @ 0.238 %U308 and would pass the cutoff test. An interval of 4 ft. @ 0.20%U308 would be diluted to 8 ft. @ 0.11 %U308 and not be included as an ore interval.

PROGRAM RESUV

All ore zones defined in a given sample set are combined to obtain a total thickness and average grade of ore represented by the set. When all sample sets for a given block have been processed at a given cutoff, the thickness and average grade of that portion of the block which contains ore is deter mined by:

```
Tb = S{Ti}/N (i=1-N), and
Gb = S{TixGi}/S{Ti} (i=1-N)
```

where,

```
N = total number of sample sets containing ore zones,
i = an individual sample set,
S{Ti} = summation of thicknesses of all ore intervals,
S{TixGi} = summation of grade x thickness of all ore intervals.
Tb = average thickness of ore in the block,
Gb = average grade of ore in the block.
```

The "ore area" (AREAO) of the block is determined by:

 $AREAO = AREAB \times N/Nt$

where,

AREAB = the total block area, Nt = total number of sample sets in the block.

Total tons of ore (TNb) and total pounds of U308 (LBb) in the block are determined by:

```
TNb = Tb x AREAO / TF , and,
LBb = TNb x Gb x 20.
where,
```

TF = the tonnage factor in cubic feet per ton.

The reserves and associated factors are (optionally) printed after reserves for a given cutoff have been calculated for each block. When all blocks have been processes for one cutoff, then the next cutoff is analysed. When all cutoffs have been analysed, a summary of reserves at each cutoff is printed.

The reserves are considered in-place reserves with no dilution except that needed to bring ore intervals up to minimum mining thickness.

12.2 RESERVES-ANALYSIS-OPTIONS

There are four main options in running RESUV; these depend primarily on the type of cutoff desired. Option 3 is the same as option 2 except for the method of handling vanadium values. Option 4 is the same as Option 1 except that vanadium is included in Option 4.

12.2.1 Option 1

Reserves are only calculated for uranium. The cutoff is an arbitrary uranium grade which is submitted as a program control parameter. Up to 7 cutoff grades are permitted for one run. The grade may be entered to the nearest one thousandth of a percent U308.

12.2.2 Option 2

Reserves are calculated for uranium and vanadium. The cutoff is determined by a comparison of total production operating cost with the value of uranium and vanadium represented by the samples, i.e. the cost (C = tota) cost per ton) for producing a ton of ore versus the estimated combined value of uranium and vanadium in that ton. The latter is determined by:

Value (V) equals pounds per ton times value per pound, or

 $V = ((Gu \times Pu) + (Gv \times Pv)) \times 20.$

where,

(The factor 20. is used since grades are expressed as percentages).

For any interval comprising one or more samples, V (Value per ton) is com pared against C (cost per ton); if C is less than V, then the interval meets cutoff requirements. The production cost per ton and uranium and vanadium prices (in dollars per pound) are submitted as program control parameters.

Note: In this option and Sections 12.2.3 and 12.2.4, a vanadium dilution grade is used in the same manner as the uranium dilution grade described in Section 12.1.

Up to 7 entries each may be made for cost, uranium price and vanadium price. However, all combinations of these parameters are run for each block and the total number of combinations may not exceed 50; i.e:

costs x # U prices x # v prices cannot be greater than 50.

If entries are made such that the number of combinations is greater than 50, the program will automatically terminate with an appropriate message.

```
12.2.2.1 Calculation of Vanadium Grades
In Option 2 vanadium grades are calculated as a function of the uranium
grade. The function equation may be one of the two following forms.
V = a + bU + cU**2 + dU**3, or
LOGe (V) = a + b x LOGe (U)
where,
V = percent V205
U = percent U308
a,b,c, and d = appropriate coefficients.
```

The coefficients must be determined previously by statistical evaluation of the relationships between uranium and vanadium grades. The methods are more or less the same as discussed for disequilibrium factors (Section 3.4).

If Option 2 is selected, RESUV will request the coefficients to be entered interactively as part of the program control parameters.

12.2.3 Option 3

Option 3 is exactly the same as Option 2, except that actual values for vanadium are used. Therefore, this option may only be run on sample data which includes vanadium assays, i.e. were originally entered in the contiguous bimetal format (Section 6.0).

In running this option, this program will be terminated if assay sets are encountered which contain no vanadium entries.

12.2.4 Option 4

In this option, reserves are calculated for both uranium and vanadium, but the cutoff is based on an arbitrary uranium grade. Only the uranium cutoff grade is used to determine ore zones; the vanadium reserves are calculated from vanadium assays associated with the uranium grade which meet cutoff requirements. This option should also be run only if the sample set data contain vanadium assays.

12.3 RUNNING THE PROGRAM - INTERACTIVE INPUT REQUESTS

12.3.1 Standard Initial Entries

Program Name: Enter "RESUV" to the right of the systems prompt; i.e.

"C:\> RESUV".

Other standard entries are as described in Section 11.2.

When RESUV is executed, the sequence of program-specific interactive entry requests (denoted below by "->") is as follows:

12.3.2 For All Options

->Title of Run; This is a title or run description of up to 75 characters that will be used for output headings.

->Minimum Mining Thickness; Section 9.1.3; up to three significant digits; to the nearest tenth of a foot; must be 1 foot or greater.

->Minimum Waste Thickness; Section 9.1.7.1; up to three significant digits; to the nearest tenth of a foot; must be 1 foot or greater.

->Tonnage Factor; Section 9.1.1; up to 4 significant digits; to the nearest hundredth of a cubic foot per ton; may not be 0.

->Uranium Dilution Grade; Sections 9.1.8.1 and 12.1; up to 3 significant digits; to the nearest one thousandth of a percent U308; may be 0, but not greater than 0.20 %U308.

->Reserve-Analysis Option; Section 12.2; enter 1,2,3 or 4; may not be 0.

12.3.3 Options Depending On Reserve-Type

The following requests will depend on the Reserves-Analysis option chosen (just above, and Section 12.2)

12.3.3.1 Option 1
->Number of Uranium Cutoff Grades; Section 12.2.1; may be up to 7.

->List of Cutoff Grades; entries for the number of grades entered above; up to 4 significant digits; to the nearest one thousandth of a percent U308; no 0 entries.

12.3.3.2 Option 2
->Number of Production Costs to be Evaluated; Section 12.2.2; up to 7.

+>List Production Costs; Section 12.2.2; may be up to 7 total production costs; number of values will depend on previous entry; up to 5 significant digits; to the nearest one hundredth of a dollar; no 0 entries.

->Number of Uranium Prices to be Evaluated; Section 12.2.2; may be to 7.

->List of Uranium Prices; Section 12.2.2; may be up to 7 uranium prices; number of values will depend on previous entry; up to 5 significant digits; to the nearest one hundredth of a dollar; no 0 entries.

->Number of vanadium prices to be Evaluated; Section 12.2.2; may be to 7.

->List of Vanadium Prices; Section 12.2.2; may be up to 7 prices; number of values will depend on previous entry; up to 5 significant digits; to the nearest one hundredth of a dollar; no 0 entries.

->Type of Vanadium Ratio Equation. Section 12.2.2.1; enter 1 for polynomial and 2 for exponential.

PROGRAM RESUV

->Coefficients for Vanadium Ratio Equation. Section 12.2.2.1; enter cooef ficient as indicated. If coefficients are zero, enter 0.

12.3.3.3 Option 3 The entries will be exactly as for Option 2 except no request will be made for vanadium ratio coefficients.

12.3.3.4 Option 4 The entries will be exactly as for Option 1.

12.3.4 Vanadium Dilution Grade

If Options 2, 3, or 4 are chosen there will be the entry:

->Vanadium Dilution Grade; Note - Section 2.2.2; up to 3 significant digits; to the nearest one thousandth of a percent U308; may be 0, but not greater than 0.50 %V205.

12.3.5 Output Options

->; Enter 0 for block-by-block and Summary results, or 1 for summary results only.

.

Figures 12.1 and 12.2 illustrate examples of the output from RESUV.

TEST DN 5 BLOCKS, URANIUM-ONLY CALCULATION (TYPE RUN = 1).

CUT-OFF Block Number	6RADE TOTAL HOLES	.05 DRE HDLES	HIN THICK Total Area Of Block	6.0 NAST MINABLE AREA AT CUTOFF	E THICK 2.0 AVG MINING THICKNESS	Block Tonnage	AV6 GRADE U308	POUNDS U308 In Ore	MAX Elev	MIN ELEV
BV1 BV2 BV3 BV4 BV5	7 5 6 14 15	5 4 4 12 10	100000. 200000. 50000. 250000. 100000.	71429. 160000. 33333. 214286 66667.	44.3 50.3 36.0 17.2 9.9	210857. 536000. 80000. 245238. 44222.	.16 .17 .18 .21 1.10	686368. 1788384. 286329. 1052707. 972947.	6999. 6978. 6981. 6951. 5630.	6864. 6873. 6891. 1725. 1750.
TOTAL5	47	35		545714.	30.7	1116318.	.21	4786736.		
HOLES AB	OVE CUTOF	F- 35								
TEST 2 TEST14 201 TEST 5	TEST15 215	TEST16 216	202 TEST 1 T	EST 2 TEST 7 203 214 (ESTB2 126 (EST11	TEST 9 TEST10 C216 204 128 129	213	TEST13 214 TEST 4			
CUT-DFF	CDARC									
BLOCK Number	TOTAL HOLES	.10 DRE HOLES	MIN THICH TOTAL AREA OF BLOCK	6.0 NAST MINABLE AREA AT CUTOFF	E THICK 2.0 AV6 MININ5 Thickness	BLOCK Townage	AVG GRADE U308	POUNDS U308 In Dre	MAX Elev	MIN ELEV
BLOCK	TOTAL	DRE	TOTAL AREA	MINABLE AREA	AV5 HININ5					
BLDCY NUMBER BV1 BV2 BV3 BV3 BV4	TOTAL HOLES 7 5 6 14	DRE HOLES 5 4 4 10	TOTAL AREA OF BLOCK 1000000. 2000000. 500000. 250000.	MINABLE AREA AT CUTOFF 160000. 33333. 178571.	AV6 MINING THICKNESS 29.5 36.1 26.1 14.4	TDWNAGE 140381. 385333. 58056. 172024.	U308 .20 .20 .22 .27	IN DRE 569500. 1577234. 258212. 938206.	ELEV 6988. 6978. 6981. 6951.	6864. 6873. 6871. 1725.
BLDCF NUMBER BV1 BV2 BV3 BV4 BV5 TDTALS	TOTAL HOLES 7 5 6 14 15	DRE HOLES 5 4 10 6 29	TOTAL AREA OF BLOCK 1000000. 2000000. 500000. 250000.	MIMABLE AREA AT EUTOFF 160000. 33333. 178571. 40000.	AV6 MINING THICKNESS 29.5 36.1 26.1 14.4 11.8	TDRNAGE 140381. 385333. 58056. 172024. 31333.	U308 .20 .20 .22 .27 1.52	IN DRE 569500. 1577234. 258212. 938206. 950787.	ELEV 6988. 6978. 6981. 6951.	6864. 6873. 6871. 1725.

.

------ detailed results for .15, .20 and .25 IU308 omitted to save space ------

SUMMARY OF RESERVE COMPUTATION

CUT-OFF	TONS	AV6 GRADE	POUNDS U308
.05	1116318.	.21	4786736.
.10	787127.	.27	4293940.
.15	474825.	.37	3492711.
.20	324452.	.45	2946379.
.25	227270.	.54	2455328.

<u>FIGUR</u>	<u>E 12.1</u>
EXAMPLE OUTPUT F	ROM PROGRAM RESUV
URANIUM-ONLY RU	N. $(RUN-TYPE = 1)$

.

PASE 1 TEET ON FIVE BLOCKS, USING URANIUM-VANADIUM RATIO (TYPE RUN = 2). MINIMINE COMBINED METAL VALUE CUTOFF- 80.00 URANIUM PRICE- 35.00 VANADIUM PRICE- 5.00 CUTOFF THICK - 6.00 TONNASE FACT -15.00 -----V205 = .000 +(5.000)U308 +(.000)U308**2 +(.000)U308**3 5LOCF TOTAL ORE TOTAL AREA MINABLE AREA AVG BLOCK NUMBER HOLES HOLES OF BLOCK AT CUTOFF THICK TONNAGE POUNDS U308 AV6 GRADE POUNDS V205 MAX BLOCK AVE SRADE MIN ELEV ELEV IN ORE **U308** IN DRE V205
 37.2
 177143.

 38.0
 405333.

 23.5
 52222.

 11.5
 163690.
 5 4 4 12 100000. 673539. 7000. A902 ₿₽1 71429. . 19 **9**5 3347494 1667049. 268279. 1016588. 7008. 7014. 7001, 8335243. 1341396. 5116391. BV2 BV3 .21 .26 .31 1.03 1.28 1.56 5.93 6906. 6923. 1733. 1755. 5 160000. 33333. 50000. 250000. RU1 214286. 14 £V5 iŚ. 10 100000. 66667. 41111. 1.19 975334. 4876672. 7211 TOTALS 47 35 545714, 23.1 839500. .27 4600789. 1.37 23037400. HOLES ABOVE CUTOFF - 35 (Hole Numbers Omitted) MINIMIUM CONBINED METAL VALUE CUTOFF- 80.00 URAN CUTOFF THICK - 6.00 TONNAGE FACT -15.00 URANIUM PRICE- 35.00 VANADIUM PRICE- 3.00 V205 = .000 +(5.000)U308 +(.000)U308**2 +(.000)U308**3 POUNDS USDE AVE GRADE POUNDS V205 MAX BLOCK TOTAL ORE TOTAL AREA MINABLE AREA AVE BLOCK NUMBEP HOLES HOLES OF BLOCK AT CUTOFF THICK TONNAGE BLOCK AVS BRADE HIN ELEV U3DB
 32.2
 153333.

 34.4
 366667.

 20.6
 45833.

 10.8
 153571.

 9.3
 41111.
 5 4 4 12 71429. .21 .22 .29 .32 7600 BV1 100000. 629881 1.03 3149407 6902 629881. 1599101. 263212. 990123. 975334. 7008. 6906. 7014. 6923. 7001. 1733. 7211. 1755. 1.09 200000. 50000. 250000. 7995506. 160000. 33333. BV. BV. 5 7014. 7001. 7211. 1316062. 4973890. 6 14 EV4 214286 1.62 **B**VS 15 ii. 100000. 66667. 1.19 4876672. TOTALS 47 35 545714. 20.9 760516. .29 4457652. 1.47 22311540. HOLES ABOVE CUTOFF - 35 (Hole Numbers Omitted) ----- Detailed Results Of Various Combinations Gaitted In Illustration to Save Space ------MINIMIUM COMBINED METAL VALUE CUTOFF-100.00 URAN CUTOFF THICK - 6.00 TONNAGE FACT -15.00 VANADIUM PRICE- 3.00 URANIUM PRICE- 25.00 V205 = .000 +(5.000)U308 +(.000)U3081\$2 +(.000)U3081\$3 BLOCK TOTAL ORE TOTAL AREA MINABLE AREA AV5 BLOCK AV5 GRADE NUMBER HOLES HOLES OF BLOCK AT CUTOFF THICK TONNAGE U308 POUNDS U308 AV6 BRADE PDUNDS V205 MAX FLEV HIN Elev TH ORE ¥205 IN DRE 20.3 96857. 25.8 274667. 17.5 38889. 9.2 109524. 12.5 27778. .26 .25 .30 .39 494530. 1.28 1.27 1.50 2472649. 7000. 6902. 100000. 71479. £V1 5 4 BV2 BV3 160000. 33333. 178571. 6906. 6923. 1733. 1757. 200000. 1391659. 232957. 6958297. 1164783. 700E. 7014. 5 Â 6 14 10 854253. 945125. 1.95 7001. 7211. BV4 250000. 4271264. 4725626. 33333. 1.70 BV5 15 100000. 3918523. 1.79 19592620. TOTALS. 47 476667. 17.2 547714. .36 2B HOLES ABOVE CUTOFF - 28 (Hole Numbers Deitted) SUMMARY OF RESERVE COMPUTATION MIN THICK 6.00 ¥205 AV5 GRADE POUNDS U308 AV5 GRADE U308 V205 CUTDEE N308 POUNDS V205 TONS \$ VALUE PRICE \$ VALUE PRICE (\$1000) 276215 80.00 35.00 5.00 837500. 4600789. 1.37 23037400. 35.00 25.00 25.00 35.00 35.00 25.00 25.00 1.47 1.47 1.57 1.57 1.57 1.57 1.57 22311540. 22311540. 21521130. 22305020. 222952. 222999. 172169. 267497. 215211. 3.00 5.00 3.00 760516. 760516. 686357. 4457652. 4457652. 80.00 80.00 .29 .29 .31 .29 .31 .31 .31 Ro. 00 4304726. 100.00 760516. 5.00 4456350. 686357. 686357. 547714. 3.00 5.00 3.00 100.00 4304226. 21521130. 100.00 4304226. 21521130. 215211. 19592620. 156741 100.00 3918523.

> FIGURE 12.2 EXAMPLE OUTPUT FROM PROGRAM RESUV URANIUM-VANADIUM RUN (RUN-TYPE = 2)

> > 145

13.0 PROGRAM ORSAC

13.1 GENERAL CONCEPTS AND OPERATIONS

Program ORSAC (Uranium Ore Reserve Estimation by Standard Methods and Computer) is designed to calculate uranium ore reserves for predetermined blocks using a throretical statistical model. Each block consists of a total volume defined by an assigned area and the average of the total thickness of mineralized material in each sample set. The mineralized material is defined by an initial minimum grade cutoff (usually 0.01%U308). The grade of material within the total volume are "fit" to a log on normal distribution and the fractional tons and average grade of material in the block available at cutoffs of 0.01%U3U8 to 0.60%U308 are calculated. A detailed description of the theoretical concepts of the ORSAC method is available from RME-183 (Section 1.2).

The blocks are first outlined as described in section 7.1 and then a UCON file (Section 7.0) must be prepared to identify the block area and the appropriate sample data to be processed for each block.

Review Section 11.0 before running the program.

Since the results from ORSAC are most reliable if the total sample population of a deposit is included in a block, it is best not to truncate low grade portions of a deposit or to break up continuous portions of a deposit in defining the blocks. However, if the total deposit is actually comprised of several smaller integral mineralized entities, each such entity should be analyzed separately.

ORSAC has proven especially effective in obtaining reserve estimates where relatively sparse sample data are available and/or if sample points are far apart. It generally provides better results in analyses for underground deposits than for deposits which will be mined by open pit methods, primarily because of the lesser mimimum mining (combining) thickness required, and also, possibly, because the original distribution of mineral values in shallow deposits has been altered by considerable remobilization.

In addition to the "standard initial parameters" Section 11.2), the program input parameters include "combining" thickness, initial minimum cutoff grade, tonnage factor, and, optionally, an additive constant "ALPHA1" (Section 16.0) used in the statistical analysis. There are several ways of combining the sample data (Section 13.3.1), and several output options are provided (Section 13.3.2).

For each block, ORSAC processes all the sample sets provided by UCON, combines consecutive samples in each set into an interval of minimum mining thickness, and determines the average grade of that interval. If the average grade is equal or greater than the assigned initial cutoff grade, the interval is considered as part of the representative sample population of the total volume of material and is saved; otherwise it is rejected. If the last interval graded is less than the minimum mining thickness, it is expanded to the minimum thickness by combining with zero grade material. The total thickness of material above cutoff represented by the sample set is calculated.

When all sample sets in the block have been processed, the average grades of all intervals that have met cutoff become the elements of the sample population on which all statistical analysis will be performed. Figure 13.1 is a listing of the combined intervals.

These grades are arranged into ascending order and the 10th, 50th, and 90th percentiles are calculated (Note: this differs from the discussion in Section 16) which refers to the 20th, 50th, and 80th percentiles.).

The additive constant ALPHA is calculated for the transformation:

X = LOGe(z + A) (Section 16).

The calculation should be such that the value of ALPHA should be equal to or greater than zero. Negative skewness of the assay data may sometimes cause ALPHA to be computed as a negative value. Therefore, an option is provided to enter a program parameter -- ALPHA1 - (Section 13.2.3) which will be substituted for ALPHA if a negative value for ALPHA is computed. If no value is submitted for ALPHA1 and ALPHA is negative, ALPHA is set to zero.

The arithmetic mean, standard elevation, variance, skewness and kurtosis are calculated.

The grades are then converted to the logarithmic (to the base e) values by:

Gl = LOGe(G+A)

where, G = original grade, A = additional constant ALPHA (or ALPHA1), G1 = logarithm of the original grade.

The statistical parameters of the logarithmic values (mean, standard direction, variance, etc) are determined and a chi-square test is applied to the converted grades to determine their goodness-of-fit to a log normal destribution (i.e. a normal distribution of the logarithmic values).

Sichels t-estimator of the mean is determined and the "fractional" tonnage and average grade at cutoffs from 0.01 to 0.60% U308 are calculated and optionally printed. The statistical parameters of the arithmetic and log-normal ⁴distributions are printed as well as the results of the chi-square test. Figure 13.2 shows an example of the chi-square test results.

The "actual" estimated tons and average grade at each cutoff are then calculated and printed; an example is shown on Figure 13.3.

When the last block has been processed, a summary of estimated reserves for all blocks in the given run are presented at cutoffs of 0.01 to 0.60 percent U308.

13.2 PROGRAM INPUT PARAMETERS

13.2.1 Combining Thickness

The combining thickness chosen for a run should approximate the minimum mining thickness anticipated in mining operations. It may be from 2 to 50 feet, to the nearest tenth of a foot.

13.2.2 Minimum Grade Cutoff

This cutoff determines the minimum average grade at which combined intervals will be accepted into the sample population. It should not be confused with the mining grade cutoffs used in the RESUV and SCOR programs. The results of the ORSAC program provide the amount of material available at various mining cutoff grades.

The minimum grade cutoff may be from 0.005 to 0.20 percent U308 or V205. If the sample data are not truncated, best results are obtained at around 0.01 or 0.02 percent U308 or V205. For both uranium and uranium, some experience must be gained in evaluating a deposit using ORSAC. Evaluation of the "goodness-of-fit" of the chi-square test for varying parameters is necessary.

13.2.3 Tonnage Factor

The tonnage factor is entered in cubic feet per ton, to the nearest one hundredth of a cubic foot.

13.2.4 ALPHA1 Constant

If an entry is made for the alpha constant (Section 13.1), it will be used, providing the value for ALPHA determined in the program is negative. If no entry is made, it will be determined in the program>

13.3 OPTIONS

13.3.1 Program Run Options

The program provides four options for establishing the intervals of "combined" assays which will comprise the sample population on which the statistical analyses will be performed. The relative merits of these options is discussed below.

13.3.1.1 Option 1: Uranium, Combined Intervals at Equal Thickness All uranium samples of each sample set are combined into intervals, the thickness of which are established by the "combining thickness".

If the sample data represent equal sample intervals or the intervals are sufficiently small that they may be combined into larger intervals without

148

PROGRAM ORSAC

"splitting" samples, then the results of the analyses will be statistically "pure", i.e. will conform to the theoretical model as it was originally derived. Incremental equal readings from gamma-log data, therefore, provide the best sample assay types with which to run the ORSAC program. Uranium assay data consisting of unequal sample intervals may be analyzed by ORSAC but the results cannaot be considered statistically "valid". If the sample intervals are equal but at thicnesses of, say, 4 feet, then the combining thickness should be an even multple of the the sample interval thickness, i.e. 4, 8, 12 (etc.) feet.

13.3.1.2 Option 2: Uranium, Total Sample Interval Above Minimum Cutoff All samples of a sample set are combined into one interval. Any contiguous intervals, having thickness equal to or greater than the combining interval and averaging less than the minimum grade cutoff, are deleted. The "grade x thickness" products of the total sample intervals become the elements of the ORSAC sample population. The avearage thickness of the combined intervals is used as the average thickness of the deposit

This option provides a means of using ORSAC with sample data which are at intervals of uneven thicknesses. The results provide a good estimate of the average grade and thickness of the entire deposit, but do not equate the mineral distribution to the method by which the deposit will be mined. It is therefore most useful for evaluating deposits which are either "massive" or relatively uniform in thickness, but will not accurately represent the eventual extraction of ore from thinly-bedded deposits of varying thickness.

13.3.1.3 Option 3: Vanadium, Combined Intervals at Equal Thickness This option is the same as Option 1 (above), but uses vanadium assays. It may only be used, of course, if vanadium sample data are present in the applicable sample data file(s). If the sample data represents equal sample intervals, and the combining thickness is as stipulated under Option 1, then the results may be considered valid.

13.3.1.4 Option 4: Vanadium, Total Sample Interval Above Minimum Cutoff This option is the same as Option 2 (above), but uses vanadium assays, if present in the applicable sample assay data file(s).

13.3.2 Program Output Options

There are five output options. These are listed below in hierachy of ascending operation, i.e. whichever option is chosen, all the higher (but not lower) options will automatically take effect.

13.3.2.1 Option 1: Output of Combined Assays All the combined intervals used in the sample population will be listed for each block processed.

PROGRAM ORSAC

13.3.2.2 Option 2: Output Fractional Tonnage The percent of total tons available at each mining grade cutoff will be listed for each block.

13.3.2.3 Option 3: Output of Statistical Parameters and Chi-Square Test The statistical parameters for both arithmetic and log-normal distribution "fits" will be listed for each block.

13.3.2.4 Option 4: Output of Tons and Average Grade The estimated tons (and average grade) available at each mining grade cutoff (from 0.01 to 0.60%U308/V205 will be listed for each block.

13.3.2.5 Option 5: Summary For All Blocks The total combined estimated tons (and average grade) for all blocks will be listed. If there is only one block, and Option 4 is also in effect, this summary is not neccessary and will be automatically deleted

13.4 RUNNING THE PROGRAM - INTERACTIVE ENTRY

13.4.1 Standard Initial Entries

Standard entries are as described in Section 11.2.

13.4.2 Program Control Entries

13.4.2.1 ->Reserves Analysis Option

Section 13.3.1; enter "1", "2", "3", or "4" depending on which of the corresponding options described in Section 13.3.1 is desired. Do not request options 3 or 4 if the data on the intermediate data file(s), specified in the appropriate UCON file, do not contain vanadium sample assay data!

13.4.2.2 -> Combining Thickness

Section 13.2.1; enter the thickness of the interval into which sample will be combined; up to 3 significant digits; to the nearest tenth of a foot; may not be 0.

13.4.2.3 -> Minimum Cutoff Grade Section 13.2.2; enter the minimum grade at which combined intervals will be accepted; up to 3 significant digits; to the nearest thousandth of one per cent U308; may be 0, but 0.01 generally gives better results.

13.4.2.4 -> Tonnage Factor Section 13.2.3; enter the tonnage factor; up to 3 sgnificant digits; to the nearest hundredth of a cubic foot per ton; between 5 and 60 cu. ft. per ton. 13.4.2.5 -> Additive Constant Section 13.2.4; enter the "ALPHA" constant; up to 2 significant digits; to the nearest thousandth of one percent U308; may be 0.

.

13.4.2.6 -> Output Option Section 13.3.2; enter "1", "2", "3", "4", or "5".

¢

•

ORSAC STATISTICAL ANALYSIS BASED ON COMPOSITED URANIUM ASSAY VALUES.

CUTDFF B. FEET DF .010 TOTAL FOOTAGE OF SAMPLES ABOVE CUTOFF	1064.0
AVERAGE THICKNESS TOTAL AREA	46.22 2000000.
TONNAGE FACTOR	15.0

SUMMARY OF HOLE STATISTICS

TOTAL NUMBER OF HOLES PROCESSED FOR RUN/BLOCK = 47;

OF THESE:

27 HAD INTERVALS ABOVE MINIMUM CUTOFF GRADE. 202 203 214 C216 TEST 2 TEST 3 TEST 5 TEST 6 TEST 7 TEST 8 TEST 9 TEST10 TEST11 TEST13 TEST14 TEST15 TEST16 TEST 1 TEST 2 TESTB2 TEST 3 TEST 4 TEST 5 TEST 6 TEST 7 TEST10 TEST11

9 HAD INTERVALS > MIN. CUTOFF. SOME ASSAYS DELETED BY EDIT. 204 213 214 201 215 216 126 128 129 10 COMPLTELY "BARREN". [NO ASSAYS REPORTED FOR HOLE]. A216 130 137 139 TEST 1 TEST 4 TEST12 TEST17 TESTA1 TEST 9 1 HAD ASSAYS, BUT INTERVAL DEFINED BY EDIT SPECS WAS BARREN. 138

ARITHMETIC ESTIMATORS- COUNT	MEAN STD	. DEV. VARIANCE	SKEWNESS KURTOSIS	PCT10 PCT50	
209	.159	.5563 .30B0	12.7689 175.8257	.023 .077	
.010 .018 .023 .029 .034 .039 .046 .054 .059 .065 .075 .082 .102 .102 .102 .102 .111 .126 .136 .155 .175 .207 .242	. 137 .010 .010 .018 .019 .025 .025 .029 .029 .034 .035 .039 .039 .047 .047 .054 .054 .059 .059 .062 .063 .103 .103 .113 .113 .136 .137 .158 .160 .176 .176 .217 .242 .245	0RDERED 010 014 017 019 025 025 030 031 035 036 039 039 048 049 055 056 048 049 055 056 046 046 070 070 076 077 066 097 104 106 116 119 132 132 138 140 144 165 179 181 219 220 0253 295	ASSAY DATA .014 .015 .019 .019 .025 .026 .031 .031 .036 .036 .039 .040 .050 .051 .056 .056 .061 .063 .070 .071 .079 .079 .100 .100 .108 .110 .120 .121 .132 .133 .140 .142 .166 .169 .183 .184 .222 .233 .295 .297	.017 .017 . .026 .022 . .026 .026 . .032 .032 . .036 .038 . .040 .040 . .052 .055 . .058 .058 . .063 .064 . .071 .071 . .080 .081 . .101 .102 . .121 .122 . .133 .133 . .145 .151 . .174 .174 . .236 .239 .	019 022 028 033 039 040 053 058 064 075 061 102 110 123 133 154 174 199 239 327

		I	FIGURE	13.1	<u> </u>			
EXAMPLE	OF	RESU	TS OF	ORSA	C RUN	ON	1 BLOCI	К
INITIAL S	UMM	ARY AN	D ORD	ERED	COMBI	NED	INTERV	ĀLS

ORSAC STATISTICAL ANALYSIS BASED ON COMPOSITED URANIUM ASSAY VALUES.

CHI SQUARE NORMALITY TEST

SUMMARY STATISTICS

•

SUMMARY STATIST				
NO. POINTS	209	ARITHMETIC VALUE		
HEAN	24484840E+01	.08642453		
VARIANCE STD.DEV.	.B2803190E+00 .91214740E+00			
SKENNESS	.78459260E+00			
KURTOSIS	.52784340E+01			
MAX VALUE MIN VALUE	.20600000E+01 42141390E+01	7.84597300 .01478505		
RANGE	.62741390E+01	7.83118800		

VALUE OF ALFA USED IN ANALYSIS - .005

CLASS IN	TERVAL (LOGS)	DBSERVED Frequency	THEORETICAL Frequency	CLASS INTERVA	L (ARITH- U308)
LESS THAN 54129630E+01 49568B90E+01 45008150E+01 35886680E+01 31325940E+01 26765210E+01 22204470E+01 17643730E+01 13082990E+01 39615200E+00 .59921650E-01 GREATER THAN	54129630E+01 47568890E+01 45008150E+01 35886680E+01 31325940E+01 26765210E+01 22204470E+01 17643730E+01 13082990E+01 39615200E+00 .59921650E-01 .51599540E+00 .51599540E+00	0 0 4 16 31 39 34 42 28 9 0 6 0 0	.00000000E+00 .00000000E+00 .83725400E+01 .13708310E+02 .25284820E+02 .36503940E+02 .36503940E+02 .36503940E+02 .25284820E+02 .19526870E+02 .00000000E+00 .25539800E+01 .00000000E+00	LESS THAN .004 .007 .011 .018 .028 .044 .069 .105 .171 .270 .426 .673 1.062 GREATER THAN	.004 .007 .011 .018 .028 .044 .069 .109 .171 .270 .426 .673 1.062 1.675 1.675

COMPUTED CHI SQUARE .16850540E+02 DEGREES OF FREEDOM 6 PROBABILITY LEVEL .99637510E-02 (i.e. PROBABILITY OF A LOWER CHISQR VALUE ("WORSE" FIT) FOR THE CORRESPONDING DEGREES OF FREEDOM)

LOGARITHMIC ESTIMATORS -	LOG HEAN	LOG VAR.	SICHEL-T	16TH PCT	50TH PCT	84TH PCT	ALPHA
	-2.4485	.828	. 126	.035	.086	.215	.005

FIGURE 13.2 EXAMPLE LISTING OF THE ORSAC CHI-SQUARE TEST

ORSAC STATISTICAL ANALYSIS BASED ON COMPOSITED URANIUM ASSAY VALUES.

ORSAC BRADE-TONNAGE DISTRIBUTION BY CUTOFF; SUMMARY FOR BLOCK.

TONNAGE CALCULATIONS -

TOTAL TONS = TOTAL AREA # AV.THICK # NUMBER MIN. HOLES / TOTAL NUMBER HOLES/ TON. FACTOR CUTOFF TONS = TOTAL TONS # FRACTIONAL TONNAGE (FROM STAT. ANALYSIS) POUNDS U308 = CUTOFF TONS # AV. GRADE # 20

TOTAL TONS - 4720568. AT AN AVERAGE BRADE OF .126- TOTAL POUNDS U308 - 11882530.

CUTOFF	TONNAGE ABOVE	AVERAGE	POUNDS	CUTOFF	TONNAGE ABOVE	AVERAGE	POUNDS
GRADE	CUTOFF GRADE	GRADE	U308	GRADE	CUTOFF GRADE	GRADE	U308
.010	4595718.	.129	11867310.	.310	369301.	.508	3748778.
.020	4317184.	.136	11782360.	.310	346217.	.520	3603762.
.030	3969082.	.146	1160B200.	.320 .330	324903.	.533	3465615.
.040	3608704.	.157	11356730.	, 330	305197.	.546	3333963.
		.169	11047600.	.340 .350	286955.	.559	3208457.
.050	3263675.	107	10699260.	.340	200733.	.572	3088770.
.060	2945525. 2657724.	104	10326760.	. 300	270049. 254361.	.585	2974589.
.070	2037/24.	.182 .194 .207	9941632.	.370 .380	239788.	.598	2865618.
.080	2399850.	.20/	9552463	. 390	237/00.	• J70	2761584.
.090	2169931.	.220 .233		. 370	226235.	.610	2/01304.
.100	1965496.	.233	9165462.	.400 .410	213618.	.623	2662220.
.110	1783718.	.246 .259 .273	8785065.	420	201860. 190892.	.636	2567282.
.120	1621960.	. 237	8414337. 8055324.	. 420	170872.	.649	2476540.
.130	1477828.	.2/3	8033324.	.430 .440	180650.	-661	2389776.
.140	1349194.	.286	7709310.	- 440	171079.	.674	2306780.
.150	1234174.	.299	7377033.	. 450	162125.	.687	2227363.
.160	1131124.	.312	7058797.	. 460	153742.	.700	2151339.
.170	1038603. 955364.	. 323	8/34824.	.4/0	145887. 138519.	.712	2078536. 2008794.
.180	733364.	. 325 . 338 . 351	6754624. 6464321. 6187529.	.470 .480 .490	130317.	./23	2008/94.
.190	880318.	. 301	618/327.	- 470	131604.	.738	1941959.
.200	812520.	.365	5923864.	. 200	125109.	.750	1877884.
.210	751145.	.378	5672994.	.510	119003.	.763	1816439.
.220	695475. 644884.	. 391	5434380.	.500 .510 .520 .530 .540 .550	113259.	.776	1757489.
.230	644884.	.404	5207457.	. 230	107852.	.789	1700916.
.240	598822.	.41/	4991657.	. 340	102757.	.801	1646604.
.250	556810.	.430	4786446.	• 220	97955.	.814	1594448.
.260	518423.	.445	4591275.	.560 .570	93425.	.827	1544343.
.270	483292.	. 456	4405641.	.570	89148.	.839	1496193. 1449907.
.280	451088.	. 469 . 482	4229039.	.580	85109.	.852	144990/.
.290	421521.	. 482	4060993.	.590	81291.	.864	1405398.
.300	394334.	.495	3901051.	.600	77680.	.877	1362586.

FIGURE 13.3 EXAMPLE OF THE ORSAC GRADE-TONNAGE DISTRIBUTION BY GRADE CUTOFF

14.0 PROGRAM SCOR

14.1 CONCEPTS AND GENERAL OPERATIONS

Program SCOR (System for Calculating Ore Reserves) is designed to calculate open pit or underground uranium reserves for predetermined blocks, using the general outline method. Two types of reserve calculations are made. One is based on the strict analysis of ore intervals defined by cutoffs (Sections 14.2.1 -14.2.5), resulting in estimate of quantities, cost, and value of recoverable pounds of U308. The other is a general grade-tonnage ("G-T") vs cutoff analysis based on combined sample intervals (Section 14.2.6). The latter is useful for preliminary evaluation and does not distinguish between open pit and underground modes; it does not utilize cost data and results in an in-place reserve estimation.

For most effective use, SCOR should be run in two phases; the first by using the grade-tonnage vs cutoff distribution for obtaining a preliminary over view of the deposit(s), and the second by using the ore-interval analysis for making a final ore reserves calculation.

Selection of sample assay data for a SCOR RUN is done by creating an appropriate UCON file (Section 7.0) which will specify the area of each block and the sample assay data to be included in the block. The designated UDAT files must be "intermediate" files, i.e. they must have been previously created by a URDAT RUN. For both the ore-interval and G-T distribution analysis, reserves are calculated one block at a time.

All other program controls and data are entered interactively at the beginning of the RUN and vary according to the options desired. Input parameters may be generally classified as:

1. Program controls which specify the type of calculations and output.

2. "Physical" data, including:

Minimum mining thickness, typel and type2 waste thicknesses, upper and lower dilution thicknesses, tonnage factor, ore grade cutoff(s), protore grade cutoff(s), processing recovery rates, mine extraction, and, for open pit calculations, the pit slope angle and the estimated length of the perimeter at the base of the pit.

3. "Economic" data, including:

Operating costs: direct mining, applicable indirect mining, haulage, royalty, processing, overburden removal, and mining waste removal.

Mineral value: price per pound U308.

Capital Costs: mine plant and equipment, primary development, processing facilities, and additional capital costs.

URAD ORE RESERVE SYSTEM

4. Standard entries as described in Section 11.2.

General descriptions of the "physical" and "economic" data are provided in Section 9.0 and should be reviewed before running the SCOR program. Some of these data apply to all cutoffs being evaluated; others must be repeated for each cutoff (the interactive prompts will indicate if multiple entries are required).

Figure 14.1 illustrates the general flow of SCOR. When the ore-interval analysis option is requested, all or most of the physical and economic data are requested. If only the G-T distribution analysis is requested, then there are no requests for economic data, and physical data consist simply of a combining thickness, a tonnage factor, and an "area-of-influence".

The RUN options and interactive entry are described in Section 14.3.

14.2 ORE RESERVES ANALYSIS METHODOLOGY

SCOR has two methods for calculating reserves; the ore-interval analysis and the grade-tonnage distribution analysis. These may be run together or separately. The methodology and results of the ore-interval analysis are described in Sections 14.2.1 through 14.2.55, and those for the G-T distribution in Section 14.2.6.

14.2.1 Ore Interval Analysis, General

The ore-interval analysis must be specified for either open pit (Section 14.2.1) or underground (Section 14.2.2) mode. A summary of the data entered interactively for an ore-interval analysis is automatically output on the p-o file at the beginning of each block analysis. Figures 14.2 and 14.3 show print-output summaries for an open pit and underground run, respectively.

The ore-interval analysis requires that grade cutoffs (Section 9.1.4) be established. At least one cutoff must be specified; up to five are permitted. Cutoff calculations are described in Section 14.2.1.

After the cutoff grades are determined, they, and all their associated data, are sorted in increasing order of grade (%U308) so that once a cutoff, at which there are no ore intervals, is reached no further processing or output of sample set results will be needed.

The ore-interval analysis for one block is carried out in two stages.

1. Each selected sample set is evaluated to determine the ore intervals (Section 9.1.2) and associated factors (waste, etc.) that may exist at each of the cutoff grades (Sections 9.1.4 and 14.2.1.1 specified during interactive entry. All pertinent calculations for each sample set are stored. Results of the sample set analysis are (optionally) listed on the p-o file.

2. If a final reserve estimate has been requested, the results of stage 1 are used to calculate the reserves and associated econom-

ics; these are automatically summarized and listed on the p-o file (Section 14.2.4).

14.2.1.1 Cutoff Grade Determination

SCOR provides two methods for establishing grade cutoffs, in percent U308, for ore (Section 9.1.2) and protore (Sections 9.1.9 and 14.2.2.2) intervals. The first is simply to enter one or more arbitrary cutoff values; the second is to determine cutoff based on break-even cost-versus-value. Only one of the methods may be used in any given RUN, except that arbitrary protore cutoffs may be used with cost/value ore cutoffs. The choice of the number and type of cutoffs is made during interactive entry.

Protore cutoffs are only used in the open pit "mode", and only if specifically requested.

There is no conceptual distinction made between ore cutoffs for the open pit mode and those for the underground mode. For open pit analysis, the concept of overburden-to-ore ratio is not considered, although this ratio may, of course, be calculated from the results of a RUN. To determine the effect of overburden, ore (and protore, if applicable) intervals are determined first, and then the net value of the intervals is tested to see if it is sufficient to support overburden.

Arbitrary cutoffs for both ore and protore are simply entered according to the choice of the user and will not be affected by any of the other data - cost, recovery, etc.

Cost/value cutoffs, however, are based strictly on other data, and are determined as follows.

1. For ore cutoff ("COG"), the equation for an integrated operation is:

COG = (CMN + CMNI + CHL + CML + RLT) / (PPP * 0.2 * %RCV/100)

(For an independent operation, the term "CML" is null)

2. For protore cutoff ("COGP"), the equation is:

COGP = (CMNW + CMLP + RLTP) / (PPP * 0.2 * %RCVP/100)

where,

URAD ORE RESERVE SYSTEM

Note: the protore cutoff is estimated on the basis that, during mining operations, it would be handled in the same manner as waste, but would later be available for processing. Protore does not enter into the final reserves economic caculations.

14.2.2 Open Pit Analysis

14.2.2.1 Determine Ore Intervals

Ore intervals meeting minimum grade and thickness requirements are delineated according to the criteria discussed in Sections 9.1.2, 9.1.3, 9.1.4, 9.1.6, and 9.1.7.

In bringing ore intervals up to minimum mining thickness, actual sample grades are used (i.e. there is no assigned "dilution grade"). After dilution, the average grade of each interval is again tested against the cutoff grade and the interval is rejected if the cutoff grade is not met. Any adjacent samples which comprise a interval equal to or greater than the minimum mining thickness and are less than cutoff are not included in the ore intervals but are considered as waste intervals (Section 9.1.7) or (optionally) potential protore intervals (Section 9.1.9).

If upper and/or lower dilution thicknesses (Section 9.1.8.2) have beem submitted, ore intervals are diluted by the appropriate thickness at the grade of the sample adjacent to those comprising the ore interval and are again checked. The interval-generating algorithm always attempts to obtain the highest grade-thickness product posssible within the limits of the prescribed criteria.

For example, assume two intervals ("#i" and "#3") meeting cutoff, but each less than minimum mining thickness, and separated by a sub-cutoff interval ("#2") which would be less than minimum mining thickness after dilution were added to the bottom of #1 and the top of #3 (the diluting material would have to come out of #2, of course). In such a case, the following combinations would be tested: #1, only, diluted to minimum mining thickness with the highest adjacent materials; #3, only, with same procedure as #1; #1, #2, and #3 combined and diluted. The combination meeting cutoff grade requirements, and with the highest GT, would be chosen. If no combination was found to meet cutoff, then all the intervals would be placed in a waste category!

14.2.2.2 Determine Protore Intervals

When all ore intervals have been defined, then, if the protore option (Section 14.3.16) has been chosen, the inter-ore waste intervals are analyzed to determine if they contain any intervals of material at minimum mining thick ness, plus dilution, with an average grade between the protore cutoff grade and the ore cutoff grade. If so they are assigned as protore. However, protore intervals cannot be separated from ore or other protore intervals by any sub-protore-cutoff waste intervals which are less than minimum mining thickness. 14.2.2.3 Determine Category of Mining Waste Intervals Any waste intervals between ore intervals (or remaining between ore and/or any defined protore intervals) are categorized as "typel" or "type2" mining waste as follows:

If a type2 waste minimum thickness has been submitted, then all inter-ore waste intervals are tested against that thickness. Any waste intervals equal to or greater than the type2 waste thickness are assigned accordingly. Lesser intervals are assigned as typel waste. If no type2 waste thickness has been submitted, then all waste is assigned to typel waste.

```
14.2.2.4 Cost Vs Value (Unit Value)
```

At each cutoff, the value of the ore intervals (and protore intervals, if defined) is then compared to the cost for mining these intervals as well as removing a representative column of total overlying materials including both mining waste and overburden. For a simple case (no protore or type2 waste designation) the comparison is made by determining TCOST (unit total cost) and TVAL (unit total value).

Total unit cost is expressed as:

 $TCOST = (D \times CR) + (TO(1) \times CM) + ((TW(1) \times CW) + (T)(2) \times CM)) + ((TW(2) \times CW) + (TO(3) \times CM)) + ((TW(N-1) \times CW + (TO(N) \times CM)) (1)$

where,

D = Depth from surface to first ore interval CR = Cost of overburden removal per yard divided by 27. N = Number of ore intervals TO(j) = Thickness of the jth ore interval (j = 1,N) CM =Total operating cost per ton divided by TF TW(j) = Thickness of the jth typel waste interval (j = 1,N-1) CW = Cost of mining typel waste per ton divided by TF TF = Tonnage factor (cubic feet per ton)

Total unit value is expressed as:

V0 (j) = 0.20 X G0(j) x price x RCV/100., and TVAL = (T0(1) x V0(1) + ((T0(2) x V0(2)). . . .+ ((T0(N) x V0(N)) (2) where, T0(j) = Thickness of the jth ore interval (j = 1,N) G0(j) = Trade in %U308 of T0(1), (j = 1,N) Price = Dollars per pound U308 (price) V0(1) = Dollar per ton value of ore, (j = 1,N) RCV = Ore processing recovery (in percent).

The ore intervals are evaluated successively downward and the net cumulative TVAL(j) - TCOST(j) values at the bottom of each jth interval are saved. If any of the value are positive, the ore interval are considered to "carry" the representative overburden, otherwise they do not "carry" the overburden.

If protore and/or type2 waste are added to the analysis, then, for cost, the terms of the interval in brackets ("()") in equation (1) are expanded to:

((TY(j-1)xCY) + (TP(j-1)xCW) + (TW(j-1)xCW) + (TO(j)xCM)),

and, for value, those in brackets in equation (2) to:

((TP(j-1)xVP(j-1)) + (TO(j)xVO(j)) for value,

where,

 $VP(j-1) = 0.20 \times GP(j-1) \times price \times PRCV/100.$

N = Number of ore intervals, TY(j-1) = Thickness of type2 waste, above the jth ore interval, CY = cost/ton for removing type2 waste divided by TF TW(1-1) = Thickness of type1 mining waste, also above the jth ore interval, CW = cost/ton for removing type1 waste (or protore) divided by TF (if for protore, includes protore processing cost/ton) TP(j-1) = Thickness of protore between the jth and (j-1)th ore interval. VP(j-1) = Dollar per ton value of protore GP(j-1) = Average grade in %U308 of TP(j-1) PRCV = Protore processing recovery (in percent)

Note: The results of the unit value analysis provide a source of data for additional analyses beyond those currently carried out in this version of the SCOR program (see Section 14.2.5)

14.2.2.5 Sample-Set Output from Open Pit Analysis The resulting ore intervals determined from each sample set may be optionally printed to show either details of each zone or summaries for the sample set.

14.2.2.6 Detailed sample-set output Figure 14.4 shows the detailed out put from two sample sets - one contains ore intervals, and the other is barren. The input data used for the ore interval analysis are the same as shown in Figure 14.2. Most of the listing is self-explanatory. For each sample set, there are two header lines which list hole number, coordinates, etc. If ore intervals are defined, they are listed below the header lines.

Three elevations are shown in the header lines - the original collar elevation of the sample set; the pit elevation, if such exists, and; the "edit" or "working" elevation. The latter is the elevation from which all depths to ore and other intervals are currently referenced. If no editing has taken place and there is no pit elevation, the working elevation will be the same as the collar elevation; If there has been no editing, but a pit elevation exists, then the working elevation will be the same as the pit elevation. In an open pit RUN, any pit elevation automatically becomes the working elevation (unless an edit is made) since, by definition, all material down to the current pit bottom has been removed (Sec tion 5.2.4). For reference (and plotting) purposes, an asterisk is placed beside either the collar elevation or the pit elevation to indicate which should represent the "ground" surface. The header entry for "DEPTH" indicates the total depth sampled from the collar elevation.

The top of each ore interval is designated by elevation or depth from the working elevation (see Section x.x). The thickness and average grade of each ore interval is shown, as well as the cumulative unit value (Section 14.2.2.4) at the base of the ore interval. Individual waste and protore thicknesses are not shown. Following the listing of the individual ore intervals is a summary which includes total thickness and average grade of ore, total waste thickness, and total thickness and average grade of protore. Type2 waste and protore are not indicated if not requested interactively.

14.2.2.7 Summary sample-set output

Figure 14.5 shows the summary sample-interval output for several sample sets, including the ones shown in Figure 14.4. The purpose of this output (in contrast to the detailed output des cribed above) is to save printing space when a large number of sample sets is processed and a printout of the results for individual sample sets is desired.

For each sample set, there is always one 64-column header entry. If ore intervals are calculated for one cutoff, they will appear on the same line as the header information. Ore interval data for the second and third cutoffs will be on a second line, and those for fourth and fifth cutoffs on a third line. If no intervals have been defined for a requested cutoff, no entry will be made for that cutoff.

Each data value is preceded by a single upper- or lower-case alphabetic code. The codes for the header data are:

"b"= block code, "a"= area number, "h"= hole (sample set) number, "p"= property code, "Y"= north coordinate, "X"= east coordinate, "C"= reference elevation if it is the collar elevation or "P"= reference elevation if it is the pit elevation, "E"= working (edit) elevation,

and following the latter is a single-digit number indicating the number of cutoffs for which ore intervals were determined. The interactive-input data summary (Figure 14.2) must be referenced for cutoffs and prices.

Ore-interval data for each cutoff is preceded by an asterisk $("\star")$ followed by the "sequence" number of the cutoff, i.e. the numerical sequence, from left to right, in which it is listed on Figure 14.2. The alphabetic codes are:

"D"= depth from working elevation to top of first ore interval, "T"= total thickness of all ore for the sample set at given cutoff, "G"= average grade (%U308) of the combined ore intervals, "\$"= cumulative dollar value of the ore intervals, "W"= total thickness of typel waste, "W"= total thickness of type2 waste, "t"= total protore thickness, and, "g"= average grade (%U308) of combined protore.

Note: when the the ore intervals "carry" the overburden, the dollar value ("") represents the lowest ore interval which reflects a break-even or positive net unit value.

14.2.3 Underground Analysis

The sample sets are analyzed and listed the same way as for the open pit analysis (Section 14.2.2), with the following exceptions.

1. The minimum (typel) waste thickness between ore zones may be less than the minimum mining thickness.

2. Waste thickness greater than the "upper" typel waste thickness (Section 9.1.7.1) are taken into account, but not stored or listed.

3. There is no protore calculation.

4. Pit elevations are ignored and the collar elevation is always the reference elevation.

6. In the unit value analysis, the net value of each zone is calculated and listed separately and not cumulated.

Figures 14.6 and 14.7 show, respectively, detailed and summary sample interval output from the the same sample sets used as illustrations in Section 14.2.2, but analyzed on an underground basis. The input data used for the ore interval analysis are the same as shown in Figure 14.3.

14.2.4 Block Ore Reserves Summary

Figures 14.8 and 14.9 show listings of final ore reserves summaries from the ore interval analysis for open pit and underground reserves, respectively. The results are developed as described in Sections 14.2.4.1 and 14.2.4.2.

14.2.4.1 Ore Reserve Quantities

After all sample sets in a block have undergone the ore-interval analysis, a final ore reserve estimate is calculated at each cutoff grade as follows:

"SUM" is the summation function. If options have not been taken to compute certain variables, then their value will be null.

"s-s" is equivalent to "sample set(s); "tn" = tons; "lb" = pounds U308, "yd" = cubic yards. "NT" is the total number of s-s utilized in the block analysis. "NI" = number of s-s having ore intervals at the cutoff. "NW1" = number of s-s having typel waste intervals. "NW2" = number of s-s having type2 waste intervals. "NP" = number of s-s having protore intervals.

"Ti" and "Gi" may be considered as the total thickness and weighted average grade of the ore intervals in each s-s of N1.

"TVi" = depth to 1st ore interval in each s-s of NI. "TWli" = total thickness of typel waste intervals in each s-s of NWl. "TW2i" = total thickness of type2 waste intervals in each s-s of NW2. "TPi" and "GPi" = total thickness and weighted average grade of the protore intervals in each s-s of NP. "TF" = tonnage factor in cubic feet per ton. "%XTRC" = percent ore extraction. "%RCV" = percent ore processing recovery. "PRCV" = estimated future percent protore processing recovery. "OT" = average thickness of ore in the block = SUM(Ti, i=1, NI) / NI. "OG" = average grade of ore = SUM(Ti x Gi, i=1,NI) / SUM(Ti, i=1,NI). "BA" = the assigned area of the block "OA" = ore area = BA x NI / NT. "TONSIP" = th ore in-place = $OA \times OT / TF$. "LBSIP" = 1b (in ore) in-place = TONSIP x OG x 20. "TONSXT" = tn ore extractable = TONSIP x %XTRC/100. "LBSXT" = 1b (in ore) extractable = LBS1P x %XTRC/100. "LBSRC" = 1b recoverable from ore = LBSXT x %RCV/100. (For an "independent" operation, if the value is based strictly on uranium contained in ore, then LBSRC = LBSXT.) For open pit:

"TWT1" = average typel thickness, prorated over OA = SUM(TW1,i=1,NW1) / N1. "TWT2" = average type2 thickness, prorated over OA = SUM(TW2,i=1,NW2) / N1. "TONSW1" = th typel waste extractable = TWT1 x OA x (%XTRC/100) / TF. "TONSW2" = th type2 waste extractable = TWT2 x OA x (%XTRC/100) / TF. "POT" = average protore thickness, prorated over OA = SUM(TPi,i=1,NP) / N1. "POG" = average grade of protore = SUM(TPi x GPi,i=1,NP) / SUM(TPi,i=1,NP). "PTONSXT" = th protore extractable = POT x OA x (%XTRC/100) / TF. "PLBSXT" = 1b (in protore) extractable = PTONSXT x 20 x POG. "PLBSRC" = 1b recoverable from protore = PLBSXT x %PRCV/100.

```
"TOV" = average direct overburden thickness = SUM(TVi,i=1,NI) / NI.
(The overburden thickness is based on s-s having ore intervals, but
is assigned to the entire block area, see Section 9.1.5.)
"OVBYD" = yd overburden directly overlying block-area = BA x TOV / 27.
"TTOT" = average thickness to bottom of pit = TOV + OT + TWT1 + TWT2 + POT.
"ANGL" = pit slope angle.
```

```
URAD ORE RESERVE SYSTEM
"P" = lenght of pit perimeter (same as block area perimeter).
"BKSLPF" = backslope function (see Section 9.1.5.1).
"BSLP" = yd overburden in backslope = BKSLPF (ANGL, TTOT, P).
"OVBTOT" = total yd overburden = OVBYD + BSLP.
For underground:
"TWT1" = average type1 thickness, prorated over OA = SUM(TW1,i=1,NW1) / N1.
"TONSWI" = th typel waste extractable = TWT1 x OA \times (%XTRC/100) / TF.
14.2.4.2 Ore Reserve Economics
After the quantities (Section 14.2.3.1) have been determined, then costs are
applied as follows:
The "cost" is in dollars and the variable names defined in Section 14.2.3.1
are not redefined.
Operating costs:
     "CM"
            = direct mining cost/ton.
     "CM1"
            = applicable indirect cost/ton.
     "CH<sup>H</sup>
            = haulage cost/ton.
     "CML"
            = ore processing cost/ton.
     "CRLT" = ore royalty cost/ton.
     "CW1" = type1 waste removal cost/ton.
     "CW2"
            = typet waste removal cost/ton.
     "CP"
            = protore removal cost/ton = CWl (open pit only).
     "CPML" = protore processing cost/ton (open pit only).
     "CPRLT" = protore royalty cost/ton = CRLT * 0.5 (open pit only).
               (This cost is an approximation of the total capital and
               operating cost per ton estimated for future protore
               processing.)
     "TOCPT" = total ore mining operating cost/ton =
             = CM + CMI + CH + CML + CRLT
               (If operation is "independent", CML = null.)
     "TMOC" = total ore mining operating cost = TONSXT x TOCPT.
     "TWIC" = total typel waste removal cost = TONSW1 x CW1.
      For open pit/protore option,
     "TWIC" = (PTONSXT + TONSWI) x CW}
               (the protore is considered as waste in the cost calculation
               and is not included in the final cost vs value comparison.)
     "TW2C" = total type2 waste removal cost = TONSW2 x CW2
     "TOC" = total operating cost = TMOC + TWIC + TW2C
```

Capital costs: "CPYD" = overburden removal cost/yd (open pit only). "COVB" = total overburden removal cost = OVBTOT x CPYD (open pit only). "CPL" = mine plant and equipment cost/ton (prorated to TONSXT). "CPML" = processing plant construction cost/ton (prorated as above). (If operation is "independent, CPML is null.) "COH" = "other capital" cost/ton (prorated as above) "CPD" = Primary development cost/ton (prorated as above, underground only). "'TCC'' = Total capital cost: For open pit operation, "TCC" = COVB + (CPL + CPML + COH) x TONSXT. For underground operation, "TCC" = $(CPD + CPL + CPML + COH) \times TONSXT.$ Overall cost: "TCOST" = total operating cost + total capital cost = TOC + TCC Total value from ore: "PPP " = price in dollars per pound U308. "TVAL " = total value = PPP x LBSRC Net value from ore: "NVAL" = total value less total cost = TVAL - TCOST. "NVPT" = net value per ton = NVAL / TONSXT. (If NVPT is less than -999, it is set to -999.) "NVPP" = net value per pound U308 = NVAL / LBSRC The potential net value per ton of any protore, as it sits, is: "NVPTP" = ((PPP x PLBSRC) - (PTONSXT x (CPRLT+CPML))) / PTONSXT "NVPPP" = net value per pound protore = ((PPP x PLBSRC) - (PTONXT x (CPRLT+CPML))) / PLBSRC

14.2.5 SCOR Plot File

One of the most useful applications of the ore-interval analysis has been that of creating a sample-set location plot (or "drill-hole location map") which shows the position, sample number, and ore-interval attributes of each sample set. Such plots can be created for each cutoff, or, with appropriate symbols, certain attributes may be shown for all cutoffs at once.

Using such plots: blocks may be revised and measured; open pit outlines may be delineated on the basis of the "carry" or "not carry" determinations for each sample set; ore interval thickness, grade, grade-thickness-product, and unit value may be isopached and contoured.

Additionally, cross sections may be plotted to show the relative vertical positions of the various ore intervals.

It was not within the scope of the current URAD project to include plotting programs. However, the option is provided to create a summary output plot file containing data from which plots can be generated if a plotter and appropriate software are available. This file is termed a "SCOR plot file" and may be optionally created any time that SCOR is run in the ore-interval analysis mode.

14.2.5.1 Structure of the Plot File

The plot file consists entirely of 80- (or less) column, formatted records. Figure 14.10 is plot file made during the same run that created the output listed in Figure 14.4. Each file will begin with two "heading" records and data for each block will begin with a "block identification" record. Follow ing each block record is a series of sample-set records. The number of sample-sets will correspond to the number of valid sample sets processed for the block. For each sample set there is one header record, followed a num ber of records equivalent to the number of cutoffs for which ore intervals were established in the given sample set.

1. The first "heading" record of the plot file contains a 3-character code followed by the title (RUN description) used in making the RUN (Section 11.2). The 3-character code indicates whether the RUN was made in the open pit ("0-P") mode or the underground mode ("U-G").

2. The second "heading" record indicates the associated price (\$ per pound U308) and grade ("P-C:") of each cutoff used in the RUN i.e. for two cut offs, the first at 30 dollars per pound and a grade value of 0.124 %U308, and the second at 25 dollars per pound and value of 0.146 %U308, the record would be:

P-C: \$ 30.00- 0.124%. \$ 25.00- 0.146%. \$

The price-cutoff sets are separated by a period (".") and the last dollar sign ("\$") may be ignored.

3. The block identification record contains the block code, block sequence number and the block area (square feet). The following record:

BLK:BK1; SEO#:1; AREA: 1000000.

indicates that the block code is "BK1", the block was the first in the sequence of blocks processed, and the block area is 1000000 square feet.

4. If the sample set records (following each block identification record) in Figure 14.10 are compared with the sample set summary records listed in Figure 14.5, it is plain that the record formats of both header and ore- interval records in the plot file correspond almost exactly to the correponding entries in the summary printout. The only differences are that in the plot file: a) the asterisk (" π ") at the the beginning of each ore interval record is deleted, and; b) the header and ore-interval entries are on individual records instead of two per line!

With these two exceptions in mind, the format descriptions discussed in Section 15.2.2.5 may be directly applied to the the sample-set data in the plot file.

14.2.6 Grade-Tonnage Distribution Analysis

SCOR provides the option of combining samples from each sample set into an interval of predetermined thickness (termed the "combining thickness") and classifying the average grade of each interval by grade intervals of 0.01 %U308. The intervals are actually (0.001 - 0.009, 0.01 - 0.019, 0.02 - 0.029, etc), up to 2.999, then they are at 0.50% U308 up to 5% and all greater than 5% are lumped together. Beyond 0.50, only class intervals containing values are listed.

The combining thickness is specified during interactive entry.

After all the sample sets from a block have been processed, the number of intervals falling into each class will have been automatically calculated. Tons of "ore" in each class interval is obtained by:

TO = NCI \times CT \times AREA/TF,

and pounds U308 (LB) are obtained by:

 $LB = TO * 20 \times GA$ where,

NCI is the number of combined intervals failing into the given class. CT is the combining thickness AREA is either a designated "area-of-influence" or the total block area divided by the number of valid sample sets processed for the block; the option is specified during interactive entry. TF is the tonnage factor. GA is the average grade of the class interval.

From this base, a cumulative distribution of in-place tons of ore and pounds of U308 is constructed (Figure 14.1)).

The estimate of reserves obtained in this fashion is only a rough approximation, but it provides some initial insight into the overall grade-tonnage distribution of a given set of data. It may be used in estimating initial tonnages and average grades, at various grade cutoffs, to apply when attempting to establish royalties, processing recovery rates, and capital and operating costs which depend on the magnitude of operations.

SCOR may be run to obtain that incremental analysis without any other analysis being carried out.

14.3 OPTIONS AND INTERACTIVE ENTRIES

This section combines discussion of the options and interactive entries required when running the program.

Specific entries are noted by "->"; no entry reference is made for obvious "Yes" or "No" responses. For additional information on any of the variables, review applicable descriptions in Sections 9.0, 10.0, 11.0, 14.1, and 14.2. WARNING! The interactive entries for SCOR are somewhat extensive if the ore-interval analysis mode is chosen. Therefore, make sure that you have de-

cided on input and output files and interactive entry options and data before proceding with a RUN.

14.3.1 Standard Entries

The standard entries and options described in Section 11.2 will not be repeated here. The term "request" used below denotes an interactive prompt.

14.3.2 Plot Output File

A plot output file (or "plot file") will be generated only on request. If the option is taken, a request will be made for the desired file name. File naming procedures and precautions are the same as for other URAD output files. Each time a plot file is generated, it will destroy any previous data on any existing file of the same name.

14.3.3 Output Of Ore-Interval Anaylsis

The results of the ore-interval analysis of each sample set may be printed or suppressed:

->0 to suppress. If to be printed, the options are: ->1 to output detailed listing (Section 14.2.1.5.1) on the p-o file. ->2 to output summary listing (Section 14.2.1.5.2) on the p-o file.

14.3.3.1 Choice of Ore Interval Position Reference If the detail listing (option 1 above) is chosen, then there is also the choice of whether the position of the ore intervals (Figures 14.4 & 14.6) are to be referenced by elevation or depth from the working elevation.

->blank for depths; ->l for elevations.

14.3.4 Calculation And Output Of The G-T Distribution Analysis

The grade-tonnage distribution analysis is only calculated on request. When calculated, it is automatically printed on the p-o file; if requested, the following additional requests for area-of-influence method and combining thickness will be made.

14.3.4.1 Choice of Area-of-Influence Method The area-of-influence (Section 14.2.6) to be assigned to each combined interval may be determined either by:

->1 to enter a specific value for the area of influence; or,

->2 to divide the block area entered in the UCON block identifier record by the total number of sample sets included within the block; this is done internally by the program.

168

If option "1" is chosen, there will be a request to enter the value of the area-of influence;

-> area-of-influence; up to 8 significant digits; to (reasonably) nearest square foot

14.3.4.2 Combining Thickness -> combining thickness ("CT"), Section 14.2.6).

14.3.5 Option For Reserves Calculation By Ore-Interval Analysis

If this option is taken, reserves will be calculated using the ore-interval analysis methods described in Section 14.2.4. A summary of the reserve analysis for each block will be automatically output on the p-o file.

Note: If this option is taken, there will be a later request for underground or open pit capital cost data, as well as for all the required physical and economic data needed for the ore-interval analysis. If it is not taken, but output of the sample-set analysis (detail or summary) and/or the plot file is requested, there will be no request for capital cost data, but the physical/economic data will be requested. If none of the above are requested, and the G-T analysis is not requested, then program will terminate! If only the G-T analysis is requested, then, most of the physical/economic data will not be required.

14.3.6 Open Pit Versus Underground Analysis

If the ore-interval sample-set output, ore-interval reserves analysis, or plot file output are requested, the RUN must be designated as "open pit" or "underground". Whichever mode is chosen will apply to all blocks included in the RUN. The open pit option assumes that the block areas outline the bottom of postulated open pits.

->1 for open pit mode; ->2 for underground mode.

14.3.7 Integrated Versus Independent Options

The ore-interval analysis must be run in the "integrated" or "independent mode (Section 9.2).

If ->Y (integrated), processing costs and recovery rates will be requested and used in all applicable portions of the analysis.

If ->N (independent), processing costs will not be requested or included in the reserves analysis, but the option will be later provided as to whether or not an ore processing recovery rate (other than 100%) should be applied in determining ore cutoff or pounds U308.

14.3.8 Ore Cutoff Grades

14.3.8.1 Number of Cutoff Grades A request is made for the number of cutoffs to be run; at least one is mandatory, and up to five may be chosen; -># cutoffs.

14.3.8.2 Arbitrary versus Cost/Price Cutoff

The choice is provided as to whether (->Y) cutoff grades will be calculated as function of cost vs price (Sections 9.1.4.1 and 14.2.1.1), or whe ther (->N) they will be directly submitted as arbitrary values (Sections 9.1.4.2 and 14.2.1.1).

If the "arbitrary" option is chosen, then: ->ore cutoff(s) in tenths, hundredths, or thousandths of one percent U_308 ; a decimal point is mandatory; a zero cutoff grade is not allowed.

If the cost/price option is chosen, the cutoffs are calculated internally.

14.3.9 Standard Physical Parameters and Operating Cost Entries

If the ore-interval analysis option has been chosen, the entries for this section will all be requested regardless of whether the run is designated as "open-pit" or "underground". For some data elements, the number of entries will be equivalent to the number of cutoffs requested (Section 14.3.8.1); these are indicated by the term ("for # cutoffs"). For others, only one entry will be required.

Even if arbitrary cutoffs have been submitted, and the given RUN is being made simply to determine ore reserve quantities at those cutoffs, it is nevertheless prudent to submit reasonable values for costs and price.

14.3.9.1 Ore Processing Operating Cost ->Processing Cost; up to 5 significant digits; to the nearest hundredth of a dollar; for # cutoffs.

14.3.9.2 Ore Processing Recovery Rate ->Ore processing recovery rate; up to 5 significant digits; to the nearest hundredth of one percent; for # cutoffs; may not be zero.

14.3.9.3 Uranium Prices ->Price per pound U308; up to 5 significant digits; to nearest hundredth of a dollar; for # cutoffs, no zero entries allowed.

14.3.9.4 Minimum Mining Thickness

->Minimum mining thickness; up to 3 significant digits; to nearest 10th of a foot; must be at least 1 foot. In the open pit mode, this will also be used as the protore minimum mining thickness, as well as the minimum typel waste thickness.

ł

14.3.9.5 Upper Dilution Thickness

->Upper dilution thickness; up to 3 significant digits; to nearest 10th of a foot; may be zero. This is the thickness of "diluting" material adjacent to and above defined ore intervals which will be added to the intervals at the grade of the diluting material.

14.3.9.6 Lower Dilution Thickness

->Lower dilution thickness; same criteria as "upper dilution thickness" (above). Material is adjacent to and below ore intervals.

14.3.9.7 Tonnage Factor

->Tonnage factor in cubic feet per ton; up to 4 significant figures; to nearest hundredth of a cubic foot; may not be zero. This will be used to convert volumes of ore, waste, and protore into tons.

14.3.9.8 Direct Mining Cost

->Direct mining cost/ton; up to 5 significant digits; to nearest hundredth of a dollar; may be zero; fot # cutoffs. Includes all cost for mining a ton of ore and moving to the point where it will be first loaded and transported to a processing plant, i.e. to the point where the "haulage" cost comes into effect.

14.3.9.9 Applicable Indirect Mining Cost

->Applicable indirect mining cost/ton; up to 5 significant digits; to nearest hundredth of a dollar; may be zero; for # cutoffs. Any operating cost not included in direct mining, haulage, royalty, or processing, but which is affected by the ore "production" rate.

14.3.9.10 Haulage Cost

->Haulage cost /ton; up to 5 significant digits; to nearest hundredth of a dollar; may be zero; any cost of transporting material which is not included in the direct mining cost.

14.3.9.11 Ore Royalty Cost

->Royalty cost in dollars per ton of ore; up to 5 significant digits; to nearest hundredth of a dollar; may be zero; for # cutoffs. Value of renumeration to a third party directly or indirectly based on the uranium content of the ore itself.

14.3.10 Open-Pit-Specific Factors

The following requests will only be made if RUN has been designated in the open pit mode.

14.3.10.1 Overburden Removal Cost

->Overburden removal cost per cubic yard; up to 4 significant digits; to nearest hundredth of a dollar; may be zero.

14.3.10.2 Option for Charging Open Pit Typel Waste Removal Cost ->Y if typel waste removal is prorated to direct mining cost. ->N if not.

If ->Y, the typel waste intervals will be calculated, but not costed.

If ->N, then there will be a request for entry of the typel waste cost, and,

->Typel waste removal cost/ton (of waste); up to 4 significant digits; to nearest hundredth of a dollar; may be zero; for # cutoffs.

14.3.10.3 Option for a Type2 Waste Removal Cost This option provides for the designation of a minimum thickness of type2 waste.

->Y to assign a type2 waste category; ->N if no such waste breakdown is desired.

If yes, requests for the mininum thickness and removal cost of type2 waste will follow. The maximum typel waste thickness is set equal to the minimum Type2 waste thickness, and waste intervals at that thickness will be charged to Type 1 waste.

->minimum type2 waste thickness; up to 3 significant digits; to nearest 10th of a foot; must be greater than minimum mining thickness.

->cost/ton for remoming Type2 waste; up to 5 significant digits; to nearest hundredth of a dollar; may not be zero.

14.3.10.4 Protore Option The number of protore cutoffs entered will be equivalent to the number of ore cutoffs established. The protore cutoff establihed at any given ore cutoff must be less than that ore cutoff.

The protore option is provided in two modes: 1) if ore cutoffs have been submitted arbitrarily, and; 2) if determined by cost vs price.

For mode 1: ->0 for no protore analysis; ->1 for arbitrary protore cutoffs.

For mode 2: ->0 for no protore analysis; ->1 for arbitrary protore cutoffs; ->2 for protore cutoffs calculated by cost vs price as described in Section 14.2.1.1.

If the protore option is not taken, the next three requests will be omitted

Protore Processing Cost:

->Protore Processing cost per ton of protore; up to 5 significant digits; to nearest hundredth of a dollar: may be zero; for # cutoffs. To be useful,

this value should reflect the best estimate of the total cost per ton which will be incurred in the future for processing the protore.

Protore Processing Recovery Rate:

->Anticipated protore recovery rate, in percent; up to 5 significant digits; to nearest hundredth of a percent; may not be zero; for # cutoffs.

Protore Cutoffs:

If the choice has been made (Section 14.3.10.4) for protore calculations by arbitrary cutoff, then:

->Protore cutoff(s), in tenths, hundredths, or thousandths of one percent U308; a decimal point is mandatory.

If the choice is for the protore cutoffs to be determined by cost versus price, they will be calculated internally.

After protore cutoffs are established, each is displayed on the monitor along with its corresponding ore cutoff. This provides the opportunity to compare the two, and a "prompt" option is provided to reconsider the protore cutoffs. If ->Y, interactive entry flow will return to the very beginning of the protore sequence. If ->N, the entry sequence will continue, but if any protore cutoff is not less than its corresponding ore cutoff, an error message will be displayed and the flow will return to the beginning of the protore sequence, so that the protore option may be reconsidered.

Following the completion of the protore option procedures, the program will branch to the open pit capital costs option.

14.3.11 Underground-Specific Operation Factors

.

The following requests will only be made if the RUN has been designated in the underground mode.

14.3.11.1 Option for Charging Underground Typel Waste Removal Cost ->Y if typel waste removal is prorated to direct mining cost. ->N if not.

14.3.11.2 Minimum Typel ("Stope") Waste Thickness ->Minimum thickness of typel waste intervals; up to 4 significant digits; to nearest 10th of a foot; must be at least 2 feet; may be less than minimum mining thickness.

The minimum Typel waste thickness is always considered in the ore interval calculations. However, if its removal cost is prorated to the direct mining cost (Section 14.3.11.1), no typel waste will be calculated or costed, and the next two requests will be omitted.

14.3.11.3 Maximum Typel ("Stope") Waste Thickness ->Maximum thickness of typel waste intervals; up to 4 significant digits; to nearest 10th of a foot; must be greater than minimum typel thickness.

.

14.3.11.4 Cost for Removal of Typel Waste ->Cost/ton for removing typel waste; up to 5 significant digits; to nearest hundredth of a dollar.

14.3.12 Open-Pit-Specific Capital Cost Factors

If the option has been selected for reserves calculation (Section 14.3.5), the following requests will be made relating to open pit capital costs.

14.3.12.1 Pit Slope Angle

->The pit slope angle; up to 4 significant digits; to the nearest hundredth of a degree. Must be from 30 to 90 degrees. If it is entered as 90 degrees, no backslope will be calculated, and the next two requests, calling for pit perimeter data will not be made.

14.3.12.2 Pit Perimeter Length

If the valid pit slope angle (between 30 and 90 degrees) is entered (above), then there will be two requests. The first is for the number of blocks to be processed for a given RUN, as defined by the applicable UCON file.

Then, for each block, there will be a request for the corresponding pit perimeter to be used for the backslope calculation. The block numbers in the "prompts" correspond to the sequence in which the blocks are arranged in the UCON file, and do not refer to any block "code" identifications which may be assigned to the blocks. The first "B#" instruction record represents the first block; the second "B#" record, the second block; and so forth. For each block prompt, enter:

->The total length, in feet, of the perimeter at the base of the pit; up to 6 significant digits; to nearest foot; may not be zero This should be the perimeter of the block area. If there are any other primary development costs besides the overburden removal, they must be included in "other capital costs" (below).

14.3.12.3 Underground-Specific Capital Cost

If the option has been selected for reserves calculation (Section 14.3.5), the following request will be made relating to undergorund capital costs.

14.3.13 Primary Development Cost

->Primary development cost/ton of ore; up to 5 significant digits; to near est hundredth of a dollar; may be zero; for # cutoffs.

14.3.14 General Capital Costs

If the option has been selected for reserves calculation (Section 14.3.5), the following requests will be made relating to both open pit and under ground modes.

14.3.14.1 Ore Processing Capital Cost This request will not be made, if RUN is in the "independent" mode.

->Capital cost for ore processing, per ton of ore; up to 5 significant digits; to nearest hundredth of a dollar; may be zero, for # cutoffs.

14.3.14.2 Mine Plant and Equipment Capital Cost ->Capital cost for mine plant and equipment, per ton of ore; Up to 5 significant digits; to nearest hundredth of a dollar; may be zero; for # cutoffs.

14.3.14.3 "Other" Capital Cost ->Any other applicable capital cost, per ton ore; up to 5 significant digits; to nearest hundredth of a dollar; may be zero; for # cutoffs.

.

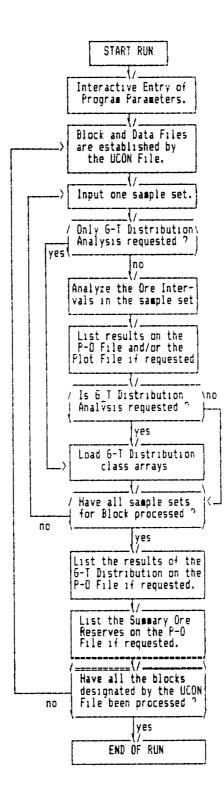


FIGURE 14.1 GENERALIZED FLOW OF THE SCOR PROGRAM

.

******* "SCOR" ORE RESERVES CALCULATION *******

BEGIN IST BLOCK: RUN BY: P DEVERSIE : DATE: MAR BE . PAGE 1 RUN:1 BLOCK WITH ALL HOLES; 1 BLOCK EXCLUDING AREA VVV; UDATCB.B FILE. THE FOLLOWING ANALYSIS IS BASED ON AN OPEN PIT OPERATION

LISTED BELOW IS A REVIEW OF THE COSTS AND OTHER MINING FACTORS:

OPERATION IS INTEGRATED. TYPE! WASTE COST IS NOT PRORATED TO MINING COST. VALUE/PRICE PER LB- U308 SURFACE MNG CUTOFF PCT U308 \$ 35.00 \$ 30.00 \$ 25.00 .114 .139 .173 PROTORE NNG CUTOFF PCT U308 PROTORE PROCESS. RECVRY (%) PROTORE PROCESS. COST/TON .û29 .033 .040 50.00 60.00 70.00 \$ 10.00 \$ 12.00 \$ 14.00 EST. PROTORE RLTY COST/TON \$ 2.50 \$ 2.00 \$ 1.50

 DIRECT ORE MINING COST/TON APPLICABLE INDRCT COST/TON TYPE1 MNG. WASTE COST/TON MIN. TYPE1 MASTE THICKNESS TYPE2 MNG. WASTE COST/TON MIN. TYPE2 WASTE THICKNESS OVERBURDEN REMOVAL COST/YD ORE PROCESSING COST PER TON ORE PROCESSING RECOVERY (X) ORE ROYALTY COST/TON ORE COST/TON ORE ROYALTY COST/TON
 \$ 50.00 \$ 55.00 \$ 60.00 S 3.00 \$ 2.00 \$ 1.00 S 2.00 \$ 2.00 \$ 2.00 S 2.00 \$ 2.00 S 3.00 \$ 2.00 \$ 2.00 S 3.00 \$ 75.00 \$ 75.00 S 5.00 \$ 4.00 \$ 3.00
 HAULAGE COST/TON \$ 1.00 TONNAGE FACTOR, (FT##3/TON) UPPER DILUTION (FEET) 15.00 .50 LOWER DILUTION (FEET) .50 MINIMUM MNG. THICKNESS (FT.) 2.00 PERCENT MINE EXTRACTION (%) 90.00 CAP. COST/TON PROC. PLANT \$ 15.00 \$ 17.00 \$ 19.00 CAP. COST/TON MINE PL & EOP. \$ 5.00 \$ 4.00 \$ 3.00 OTHER CAPITAL COSTS/TON \$ 3.00 \$ 3.00 \$ 3.00 PIT SLOPE ANGLE (DEGREES) PERIMETER AT PIT BASE (FT) 60.00 5000. ---------------------------

FIGURE 14.2 EXAMPLE OF THE SUMMARY OUTPUT OF THE "INTERACTIVE DATA AND CONTROLS (FOR OPEN PIT MODE)

"SCOR" ORE RESERVES CALCULATION

BEGIN IST BLOCK; RUN BY: P DEVERGIE ; DATE: MAR BB . PAGE 1 RUN:TEST ON ONE BLOCK, ALL DATA FROM UDATCB.B FILE.

THE FOLLOWING ANALYSIS IS BASED ON AN UNDERGROUND OPERATION

LISTED BELOW IS A REVIEW OF THE COSTS AND OTHER MINING FACTORS:

OPERATION IS INDEPENDENT. TYPE1 WASTE COST IS NOT PRORATED TO MINING COST.

VALUE/PRICE PER LB U308	\$	35.00 \$	30.00 \$	25.00 \$	20.00
UNDERND MNE CUTOFF PCT U	1308	.114	.139	.173	.200

NO PROTORE CALCULATION REQUESTED.

DIRECT ORE MINING CDST/TON APPLICABLE INDRCT COST/TON STOPE NNG. WASTE COST/TON MIN. STOPE WASTE THICKNESS MAX. STOPE WASTE THICKNESS ORE PROCESSING COST PER TON ORE PROCESSING RECOVERY (%) ORE ROYALTY COST/TON HAULAGE COST/TON	5555	1.00 15.00 2.00 10.00 .00 100.00	\$ \$ \$	2.00 15.00 .00	555	70.00 3.00 15.00 .00 100.00 4.00	\$ \$	4.00 15.00 .00 100.00
TONNAGE FACTOR, (FT:#3/TON) UPPER DILUTION (FEET) LOWER DILUTION (FEET) MINIMUM MNG. THICKNESS (FT.)		.00 .00						
PERCENT MINE EXTRACTION (%) CAP. COST/TON PRIM. DEVLP. CAP. COST/TON MINE PL FOR	\$	5.00	\$			5.00		

-	 	 	 	 	
	COSTS/TON		.00 \$		

FIGURE 14.3 EXAMPLE OF THE SUMMARY OUTPUT OF THE "INTERACTIVE DATA AND CONTROLS" (FOR UNDERGROUND MODE)

.

URAD ORE RESERVE SYSTEM

TYP N-COORD E-C D-P 5000	00RD ELEV. 5000 11000.5	PIT-ELV. 10850.5#	ED-ELV. 10850.5	DEPTH PRPTY 465.5 VDATA	AREA- # VVV	HOLE-# TEST 2
WILL ORE CARRY GRADE CUTOFF, P MAX COST / LB U DEPTH TO FIRST ELEV. AT TOP OF \$1: ORE ZONE, GRADE OF ORE, CUMUL. NET UNI \$PROTORE, THI GRADE OF ORE, GRADE OF ORE, CUMUL. NET UNI SRADE OF PROT DEPTH TO TOP OF \$1: ORE ZONE, GRADE OF ORE, CUMUL. NET UNI	THILKNESS XU308. T VALUE. \$ CKNESS ORE XU308 ORE XU308. T VALUE. \$ CKNESS ORE XU308 ORE XU308.	3.00 .120 -4.0 5.00 5.00 5.00 .406 56.3 .000 .000 297.00 8.50 .270	5.00 .406 44.6 .00 297.00 8.50 .270 85.3 .00 .000 .000 .000	5.00 .406 \$ 29.9 .00 297.00 8.50 .270 \$ 54.8 .00 .000 .00		
OVERBURDEN THIC TOTAL ORE THICK ORE, AVERABE GR TOT. PROTORE TH PROTORE, AV5 SR TOTAL TYPE1 WAS TOTAL TYPE2 MN6 TYP N-CODRD E-C O-P 5000 THIS SAMPLE SE	NESS (FT) ADE (ZU3DB) ICKNESS(FT) ADE (ZU3DB) TE (FT) . WASTE 	16.50 .294 5.00 .056 .00 24.50 PIT-ELV. .6850.51	13.50 .320 .000 .000 13.00 ED-ELV. 6856.5	13.50 .320 .00 .00 13.00 JEPTH PRPTY URDAT	AREA-I AAA	 HOLE-∎ TESTA1

EXAMPLE OF DETAILED LISTING OF ORE INTERVALS ANALYSIS BY SAMPLE SET (FOR OPEN PIT MODE)

-

 SCOR ANALYSIS DF INTERMED. UDAT FILE 'UDATCE.B', DATE: MAK 88
 PAGE 2

 RUN: OPEN PIT ORE INTERVAL ANALYSIS; COMPARE SUMMARY VS DETAIL P-C.
 BLK: BLK!, TWO HOLES, FILE UDATCE.B, FDR COMPARISON.

 NO PLOT-DATA OUTPUT REQUESTED RUN BY:P DEVERGIE
 DBK1 aVVV hTEST 2 pVDATA Y 6000 X 5000P10850.5 E10850.5 3 41 D 259.5 T 16.50 6 .284 \$ 112.2 w .0 w 24.5 t 5.0 g .056

 #2 D 279.0 T 13.50 6 .320 \$ B5.3 w .0 W 13.0 t .0 g .000
 #3 D 279.0 T 13.50 6 .320 \$ 54.8 w .0 w 13.0 t .0 g .000

.

bBK1 #AAA hTESTAI pURDAT Y 5000 X 5000P 6850.5 E 6850.5 0

EXAMPLE OF SUMMARY LISTING OF ORE INTERVALS ANALYSIS BY SAMPLE SET (FOR OPEN PIT MODE)

URAD ORE RESERVE SYSTEM

TYP N-COORD E-COORD ELEV. PIT-ELV. ED-ELV. DEPTH PRPTY AREA-4 HOLE-4 UND 6000 5000 11000.54 10850.5 11000.5 465.5 VDATA VVV TEST 2 .200 \$ 20.00 \$ 424.0 10576.5 9.50 .242 -6.9 10553.50 8.00 286 15.Ž TOTAL ORE THICKNESS (FT) 31.50 ORE, AVERAGE GRADE (2030B) 160 IDTAL STOPE WASTE (FT) .00 17.50 17.50 17.50 .262 .00 .262 .262
 TYP N-COORD E-COORD ELEV. PIT-ELV. ED-ELV. DEPTH PRPTY AREA-* HOLE-*

 UND 5000 5000 7000.5 6850.5 7000.5
 THIS SAMPLE SET IS BARREN FOR THE INTERVAL TESTED.

<u>FIGURE 14.6</u> EXAMPLE OF DETAILED LISTING OF ORE INTERVALS ANALYSIS BY SAMPLE SET (FOR UNDERGROUND MODE)

.

•

SCOR ANALYSIS OF INTERMED. UDAT FILE "UDATCB.B ". DATE: MAR 80 PAGE 2 RUN:COMPARE UNDERGROUND ORE INTERVAL ANALYSIS - SUMMARY VS DETAIL P-O. BLK:BLK1, TWO HOLES, FILE UDATCB.B, FOR COMPARISON. NO PLOT-DATA DUTPUT REQUESTED RUN BY:P DEVERGIE

 bBK1 aVVV hTEST 2 pVDATA Y
 6000 t
 5000C11000.5 E11000.5 4
 \$1 D 410.0 T 31.50 6
 .160 \$
 98.2 w
 .0 W 13.5 t
 .0 g
 .000

 \$2 D 424.0 T 17.50 6
 .262 \$
 97.6 w
 .0 W 13.5 t
 .0 g
 .000
 \$3 D 424.0 T 17.50 6
 .262 \$
 60.8 w
 .0 W 13.5 t
 .0 g
 .000

 \$4 D 424.0 T 17.50 6
 .262 \$
 22.1 w
 .0 W 13.5 t
 .0 g
 .000
 ...

68K1 AAAA HTESTA1 PURDAT Y 5000 X 5000C 7000.5 E 7000.5 0

.

FIGURE 14.7 EXAMPLE OF SUMMARY LISTING OF ORE INTERVALS ANALYSIS BY SAMPLE SET (FOR UNDERGROUND MODE) SCOR ANALYSIS OF INTERMED. UDAT FILE "UDATCB.B", DATE: MAR BB PAGE 3 RUM:1 BLOCK MITH ALL HOLES: IBLOCK EXCLUDING AREA VVV; UDATCB.B FILE. BLK:BLK1, TEST ON FILE UDATCB.B, ALL HOLES PLOT-DATA GUTPUT ON FILE "A:SCORPLOT.P". RUN BY:P DEVERGIE

\$## SUMMARY OF RESERVES ANALYSIS FOR BLOCK Bk1, OPEN PIT OPERATION. \$##
(Note: when "No. Sample Points in Dre" = 0, values null at given cutoff.)

ORE CUTOFF, [YU308] .114 .139 .173 PRDTDRE CUTOFF, [YU308] .029 .033 .040 VALUE PER POUND U308 [\$] 35.00 30.00 25.00 TUTAL BLUCK AREA ISD. FT.] 2000000 2000000 2000000 NUMBER OF SAMPLE PDINTS IN ORE 33 33 29 TOTAL ORE AREA (SQ. FT.] 1466667 1466667 1288887 DRE, AVERAGE THICKNESS (FT) 11.04 9.09 B.70 DRE, AVERAGE THICKNESS (FT) 11.04 9.07 C.7 DRE, TONS EXTRACTABLE 971000 B00006 672000 ORE, POUNDS U308 EXTRACTABLE 971020 B00006 672000 DRE, AVERAGE THICKNESS IFTJ 2.8 3.0 3.8 PRDTDRE, AVERAGE THICKNESS IFTJ 9.7 7.7 1.7 TYPE1 WASTE, TONS EXTRACTABLE 237000	chotet when the boupte formes th		a varae		
TOTAL BLOCK AREA ISB. FT.3 2000000 2000000 2000000 NUMBER OF SAMPLE PDINTS IN ORE 33 33 29 TOTAL ORE AREA (SG. FT.1 1466657 1466667 1288889 DRE, AVERAGE THICKNESS (FT) 11.04 9.09 B.70 DRE, AVERAGE THICKNESS (FT) 11.04 9.09 B.70 DRE, AVERAGE FRADE [10308] .487 .568 .55 ORE, TONS LITRACTABLE 971200 800006 672800 ORE, POUNDS UJ308 EXTRACTABLE 9461740 9093046 8815360 PROTORE, AVERAGE THICKNESS IFTJ 2.8 3.0 3.8 PROTORE, LBS UJ308 EXTRACTABLE 9461740 9093046 8815360 PROTORE, AVERAGE THICKNESS IFTJ 2.8 3.0 3.8 PROTORE, LBS UJ308 EXTRACTABLE 250667 261333 290667 PROTORE, AVERAGE THICKNESS IFTJ 9.7 7 7 7 TYPE1 WASTE, TONS EXTRACTABLE 232000 170627 13333 TYPE2 WASTE, AVERAGE THICKNESS IFTJ 2.6 1.9 1.7	ORE CUTOFF, [11308] PROTORE CUTOFF, [11308] VALUE PER POUND U308 [\$]	.114 .029 35.00	.139 .033 30.00	.173 .040 25.00	
PRDIDRE, AVERAGE IMICKNESS IFTJ 2.8 3.0 3.8 PRDIDRE, TONS EXTRACTABLE 250667 261333 290667 PRDIDRE, AVERAGE GRADE IZU3081 .067 .077 .050 PRDIDRE, LBS U308 EXTRACTABLE 337098 401179 289907 TYPE1 WASTE, AVERAGE THICKNESS IFTJ .9 .7 .7 TYPE1 WASTE, AVERAGE THICKNESS IFTJ .667 57333 53333 TYPE1 WASTE, AVERAGE THICKNESS IFTJ .6 1.9 1.7 TYPE1 WASTE, AVERAGE THICKNESS IFTJ .6 1.9 1.7 TYPE2 WASTE, AVERAGE THICKNESS IFTJ 2.6 1.7 13333 OVERBURDEN, AVERAGE THICKNESS IFTJ 2.6 1.7 1.7 D	TOTAL BLOCK AREA (SD. FT.) NUMBER OF SAMPLE PDINTS NUMBER OF SAMPLE PDINTS IN ORE TOTAL ORE AREA, (SQ. FT.) DRE, AVERAGE THICKNESS (FT) DRE, TONS IN PLACE ORE, AVERAGE GRADE (XU300) ORE, TONS EXTRACTABLE ORE, POUNDS U300 EXTRACTABLE	2000000 45 33 1466657 11.04 1079111 .487 971200 9461760	2000000 45 33 1466667 9,09 888889 568 800000 9093046	2000000 45 29 1288889 8.70 747556 .655 672800 6815360	
	PROTORE, AVERAGE THICKNESS IFTJ PROTORE, TONS EXTRACTABLE PROTORE, AVERAGE GRADE [ZU300] PROTORE, LBS U308 EXTRACTABLE TYPEI MASTE, AVERAGE THICKNESS IFTJ TYPEI WASTE, TONS EXTRACTABLE TYPE2 WASTE, AVERAGE THICKNESS IFTJ TYPE2 WASTE, AVERAGE THICKNESS IFTJ TYPE2 WASTE, TONS EXTRACTABLE OVERBURDEN, AVERAGE THICKNESS IFTJ UVERBURDEN, AVERAGE THICKNESS IFTJ UVERBURDEN, DIRECT ICU. YDS.J (x10113) BACKSLOPE & RAMP ICU. YDS.J (x10113) TOTAL OVERBURDEN ICU. YDS.J (x10113) RECOVERABLE POUNDS U308 (ORE) TDTAL RECOVERABLE POUNDS U308) TDT. OPERATING CDST (5/TON) OPERATING CDST, TOTAL \$. (x10113) TYP1 WASTE (+ PROT), TDTAL \$. TYP2 MNG. WASTE CDST (5/TON) OPERATING CAP. COST (5/TON) TOTAL CAPITAL COST, TOTAL \$. (x10113) \$ VALUE, EXTRCT.LBS U308 (ORE) (x10113) \$ VALUE, EXTRCT.LBS U308 (ORE) (x10113) \$ VALUE, EXTRCT.LBS U308 (ORE) (x10113) \$ VALUE FOR BLOCK. (x10113)	2.8 250667 .067 337098 82667 2.6 232000 375.6 27321 10924 40246 8797438 168549 8967986 6797438 168549 8967986 74.00 71867 4000000 464000 223.00 24261 331162 307986 189187	3.0 261333 .077 401179 57333 1.9 170667 396.7 29400 10828 40229 863829 40229 863829 40229 863829 863829 40229 863829 40229 863829 40229 863829 400 43337 24.00 43337 272791 259152 147812	3.8 290667 .050 289907 .7 53333 1.7 133333 372.6 27601 27760 27601 202935 8753834 84 056515 5504000 56515 55504000 56515 55504000 266667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 26667 2750 2667 2750 2667 2750 2750 2750 2750 2750 2750 2750 275	

NET VALUE, \$ PER LB U308 IN PROTORE 16.41 14.80 2.80

**** SUMMARY OF HOLE STATISTICS ****

TOTAL NUMBER OF HOLES PROCESSED FOR RUN/BLOCK = 47;

OF THESE:

1

12 HAD INTERVALS ABOVE LOWEST CUTOFF GRADE USED FOR THE RUN. 21 HAD INTERVALS > MIN. CUTOFF. SOME ASSAYS DELETED BY EDIT. 1 HAD ASSAYS, BUT NO INTERVALS ABOVE LOWEST CUTOFF GRADE. 1 HAD ASSAYS, BUT NO INTERVALS; SOME ASSAYS DELETED BY EDIT. 10 WERE "BARREN". IND ASSAYS REPORTED FOR HOLE]. 2 WERE TOTALLY REJECTED BY ELEV, OR LITH/ELEV EDIT.

FIGURE 14.8 EXAMPLE OF ORE RESERVES SUMMARY FROM THE ORE INTERVAL ANALYSIS (FOR OPEN PIT MODE)

SCOR ANALYSIS OF INTERMED. UDAT FILE "UDATCB.B", DATE: MAR 88 RUM:TEST ON ONE BLOCK, ALL DATA FROM UDATCB.B FILE. BLK:BLK1, TEST ON FILE UDATCB.B, ALL HOLES NO PLOT-DATA OUTPUT REQUESTED RUN BY:P DEVERGIE

\$## SUMMARY OF RESERVES ANALYSIS FOR BLOCK BK1, UNDERGROUND OPERATION. ### (Note: when "No. Sample Foints in Dre" = 0, values null at given cutoff.)

.

1

ORE CUTOFF, [10308]	.114	.139	.173	.200	
Value per pound 0308 [\$]	35.00	30.00	25.00	20.00	
IDTAL BLOCK AREA [SQ. FT.]	2000000	2000000	2000000	2000000	
NUMBER OF SAMPLE POINTS	47	47	47	47	
NUMBER OF SAMPLE POINTS IN ORE	26	24	22	21	
TOTAL ORE AREA, [SQ. FT.]	1106383	1021277	936170	893617	
ORE, AVERAGE THICKNESS (FT)	26.52	1585532	19.22	16.55	
ORE, TONS IN PLACE	1956028	585532	1199433	985916	
ORE, AVERAGE GRADE [ZU308]	.329	585532	.467	.536	
ORE, TONS EXTRACTABLE	1858227	1506255	1139461	936525	
GRE, POUNDS U308 EXTRACTABLE (x10#43)	12220	11560	10640	10047	
STOPE WASTE, AVERAGE THICKNESS IFTJ STOPE WASTE, TONS EXTRACTABLE TOT. OPERATING COST (\$/TON) OPERATING COST, TOTAL \$. (*10##3) STOPE MNG WASTE COST, TOTAL \$. TOTAL CAPITAL COST (\$/TON) TOTAL CAPITAL COST, TOTAL \$. (*10##3) \$ VALUE, EXTRCT.LBS U308 (ORE) (*10##3) NET \$ VALUE FOR BLOCK. (*10##3) NET VALUE, \$ PER POUND U308 IN ORE	100000		1010/0	111020	

\$\$\$\$ SUMMARY OF HOLE STATISTICS \$\$\$\$

TOTAL NUMBER OF HOLES PROCESSED FOR RUN/BLOCK = 47;

OF THESE:

20 HAD INTERVALS ABOVE LOWEST CUTOFF GRADE USED FOR THE RUN. 6 HAD INTERVALS > MIN. CUTOFF. SOME ASSAYS DELETED BY EDIT. 8 HAD ASSAYS, BUT NO INTERVALS ABOVE LOWEST CUTOFF GRADE. 3 HAD ASSAYS, BUT NO INTERVALS; SOME ASSAYS DELETED BY EDIT. 10 WERE "BARREN". INO ASSAYS REFORTED FOR HOLE).

EXAMPLE OF ORE RESERVES SUMMARY FROM THE ORE INTERVAL ANALYSIS (FOR UNDERGROUND MODE)

URAD ORE RESERVE SYSTEM

ł

,

D-P:1 BLOCK WITH ALL HOLES: 1BLOCK EXCLUDING AREA VVV: UDATCB.B FILE. P-C: \$ 35.00-.1141. \$ 30.00-.1371. \$ 25.00-.1731. \$ BLK:BK1: SED4: 1: AREA: 2000000.

DINIDNI: JEWHI	1; HREN: 2000000	•			
bB⊧1 áAAA h	202 pSTARMSA Y	2000 X	20000	2142.0 E 2142	.02
1 D 367.5 T	7.00 6 .138 \$.6 ¥	.0 W	.0t.0g	.000
2 D 367.5 T	5.00 6 .151 \$.Ú w		.0t.0g	
	203 pSTARMSA Y	2000 1		2143.0 E 2143	
1 D 370.0 T	5.00 6 .436 \$	63.2 #	.0 W	.út.úg	, ÛÛÛ,
2 B 370.0 T	5.00 6 .436 \$	48.4 w	°.Û₩	.0t .0g	.000
3 B 370.0 T	5.00 6 .430 \$	32.3 w	.0 W	.0t.0g	.000

----- Plot file data deleted here for space ------

bBK1 aVVV hTEST15 pVDATA	Y	5400 X	5200P 693B.6 E 693B.6 3
1 D 22.5 T 7.00 6 .244	Ś.	39.3 M	.0 W .0 t .0 g .000
2 D 22.5 T 5.00 6 .305	5	31.0 #	.0 W .0 t .0 g .000
3 D 22.5 T 5.00 6 .305		20.6 #	.0 ¥ .0 t .0 g .000
bBK1 aVVV hTEST16 pVDATA		5600 X	5200P 6934.9 E 6934.9 3
1 D 12.4 T 2.00 B .347		20.0 %	.0 W .Ct .0 g .000
2 D 12.4 T 2.00 6 .347		15.6 w	.0 W .0 t .0 g .000
3 D 12.4 T 2.00 6 .347		10.9 w	.0 W .0 t .0 g .000
bBK1 aVVV hTEST17 pVDATA		5500 X	5200P 6933.4 E 6933.4 0
bBK1 aAAA hTESTA1 pURDAT		5000 X	5000P 6850.5 E 6850.5 0
bBK1 aVVV hTEST 2 pVDATA	Y	6000 X	5000P10850.5 E10850.5 3
1 D 259.5 T 16.50 6 .284	\$	112.2 w	.0 W 24.5 t 5.0 g .056
2 D 275.0 T 13.50 6 .320	\$	85.3 ¥	.0 W 13.0 t .0 ĝ.000
3 D 279.0 T 13.50 B .320	\$	54.B w	.0 W 13.0 t .0 g .000
5BK1 aAAA nTESTB2 pURDAT		5055 x	6055F 6850.0 E 6850.0 3
1 D 4.5 T 33.00 6 .486		535.3 w	.0 ¥ 24.0 t 15.0 g .084
2 D 4.5 T 33.00 6 .486		435.0 *	.0 W 24.0 t 15.0 g .084
3 D 4.5 T 33.00 6 .466		328.7 w	.0 ¥ 24.0 t 15.0 g .084
0 V TEU 1 00 EVV U ETUU	•	J201/ W	•V # 24.0 C 10/0 0 /VCT

---- Data deleted; beginning of next block shown below ----

1 D1582.5 T 2 D1582.5 T	EST11 pURDAT 5.00 612.538 5.00 612.538 5.00 612.538 5.00 612.538	\$	2666.7 2320.6	H H	.0 ¥	.0 t .0 t	E 7211.0 3 .0 g .000 .0 g .000 .0 g .000
BLK:BK2; SEG#: bBK2 ⊒AAA n 1 D 367.5 T 2 D 367.5 T	2: AREA: 3000 202 pSTARMSA 7.00 6 .138 5.00 6 .151 203 pSTARMSA 5.00 6 .436	001 5 5 7 5 5 7 5 5	00. 2000 .E 2000 63.2	хинтни	2000C .0 W .0 W 2200C .0 W	2142.0 .0 t .0 t 2143.0 .0 t .0 t	E 2142.0 C .0 g .000 .0 a .000 E 2143.0 3 .0 g .000 .0 g .000 .0 g .000

FIGURE 14.10 EXAMPLE OF DATA ON SCOR PLOT FILE.

•

.

SCOR ANALYSIS OF INTERMED. UDAT FILE "UDATCB.B", DATE: MAR 00 RUN:1 BLOCK WITH ALL HOLES: IBLOCK EXCLUDING AREA VVV; UDATCB.B FILE. BLK:BLK1, TEST ON FILE UDATCB.B, ALL HOLES PLOT-DATA OUTPUT ON FILE "A:SCORPLOT.P", RUN BY:P DEVERGIE

المراجع والمحمد المحمد مندو

GRADE-TONNAGE DISTRIBUTION ANALYSIS:

EVALUATION OF DEPOSIT BASED ON FREQUENCY OF VALUES IN INCREMENTAL GRADE RANGES WITH ASSAYS COMBINED INTO 4.0-FOOT INTERVALS. TOTAL NO. OF VALID HOLES USED IN THE ANALYSIS = 45. AVERAGE AREA-OF-INFLUENCE = 44444. SQ.FT, TONNAGE FACTOR = 15.00 CU.FT. PER TON. THE AREA-OF-INFLUENCE WAS DETERMINED BY THE ASSIGNED TOTAL AREA- 2000000.SQ. FEET, DIVIDED BY THE TOTAL NUMBER OFHOLES INCLUDED IN THE ANALYSIS. (These results should not be considered as a final reserve estimate!)

ÔCUTOF Grade Xu308		5	NO. CMBND Assays in Class	TONS In Class	POUNDS U308 IN Class	CUMUL. TDNS ORE	AV6 GR AT CUTOFF	CUMUL. Pounds U308
GRADE	1 1 2 2 3 3 4 4 5 0 5 0 5 0 5 0 5 0 5 YXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	ASSAYS IN CLASS 	TN	U308 IN	TDNS ORE 3365926 3022222 2536292 2062222 1837037 1706667 1576667 1576667 1576667 1576767 1481481 1362963 1291852 1147629 805926 734815 722963 805926 734815 722963 805926 734815 722963 805926 734815 722963 805926 734815 75037 55055 474074 414814 414814 331851 348444 3486868 34868 34868 3486868 3486868 3486868 3486868 3486868 34866866	AT CUTDFF -178 198 233 281 311 322 355 373 379 416 456 483 546 575 587 600 643 6451 6451 6451 6453 790 790 790 790 844 874 874 874 874 874 1.163 1.309 1.401 1.712 1.776 1.997 1.997 1.976 1.997	POUNDS U308 12013809 11979439 11833661 11596624 11321661 11596624 11321661 1178254 1054995 10877217 10756328 1048106 10311884 9957514 9809336 9476625 9456181 9417070 9575144 9809333 B803144 898033 B803144 898033 B803144 898033 B803144 898033 B803144 898033 B803144 8599292 8472625 8435921 8146550 7704772 8472625 8435921 8146550 7704772 8472625 8436921 716328 7716328 7716328 7716328 7716328 7716328 7716328 7716328 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 7306253 756253 7306555
.40 .41 .42 .43	XX XX X		0 2 0 2 1	23703 0 23703 11851	0 196740 0 206222 105481	165925 165925 165925 142222 142222 142222 118518	1.997 1.997 2.261 2.261 2.626	5628327 6628327 6431586 6431586 6431586 6225364
. 44 . 45 . 46 . 47 . 48	X		0 0 1 0	0 0 11851 0	0 0 112592 0	106666 106666 106666 94814	2.869 2.869 2.869 3.168	6119882 6119882 6119882 6007290
.49 .50 .87 1.03 1.37 2.18 5.00 AND OVER	X X X X X X X X		0 1 1 2 2 1	0 0 11851 11851 11851 23703 23703 11851	0 0 155259 207407 245333 651851 1035851 3711585	94814 94814 94814 82962 71111 59259 35555 11851	3.168 3.168 3.168 3.527 3.969 4.556 6.676 15.658	6007290 6007290 5852030 5644623 5399289 4747437 3711585

FIGURE 14.11 EXAMPLE OF THE RESULTS OF THE GRADE-TONNAGE DISTRIBUTION ANALYSIS

186

PAGE 2

<u>15.0 APPENDIX A: THE GANLOG NETHOD</u>

15.1 INTRODUCTION

The GAMLOG method is essentially a trial-and-error iterative process of log interpretation used to determine U308 grades for a series of 1/2 or 1 foot layers comprising the ore zone under analysis. The GAMLOG program was first developed by Scott, 1962 and is cited in the following reference:

GAMLOG (J.H. Scott, 1962) The interpretation of gamma-ray log data using a digital computer. U.S. Atomic Energy Commission, GJO, RME-143.

The objective of the process is to find a grade for each separate gamma-ray log anomaly (one from each separate layer) which could be composited to form an overall anomaly that would closely match the real anomaly under analysis. Iterations are performed until sufficient accuracy is achieved.

To develop the GAMLOG program it was neccesary to establish "type" anomalies for 1/2 and 1 foot thick layers of homogeneous uranium ore. The deflection amplitudes at various points along the type anomalies were determined at percentages of peak amplitude and therefore were independent of grade. Since no homogeneous ore layers exactly 1/2 and 1 foot thick were available for actual logging, the type anomalies were derived through numerical differentiation from the log of a 4 foot thick test ore zone composed of homogeneous ore (test pit N-3, AEC compound, Grand Junction, Colorado, U.S.A.).

The method can be understood by imagining that the 4-foot layer is composed of several contiguous 1/2 foot thick layers all having the same grade as shown in Figure 1. If hypothetical individual anomalies are plotted for all 1/2 foot layers, the sum of the amplitudes of all overlapping individual anomalies will equal the amplitude of the 4 foot anomaly at any depth.

Referring to Figure 1, if we examine the 4 foot anomaly deflections A, B, C, D, E ..., a series of points 1/2 foot apart, we see that by subtracting successive adjacent deflections of the 4 foot anomaly we obtain the amplitude a, b, c, d, c, b, a of the 1/2 foot anomaly: that is B - A = a; C - B = b; D - C = c, etc.

Therefore, if we simply subtract successive readings 1/2 foot apart along the large anomaly, we will obtain the desired points along the 1/2 foot anomaly. This procedure was used to obtain the 1/2 foot type anomaly. The 1 foot type anomaly was obtained by subtracting successive readings 1 foot apart along the 4 foot anomaly.

Since small percentage errors in the 4 foot anomaly can lead to large errors in the 1/2 and 1 foot type anomalies, it was necessary to obtain very accurate deflection amplitudes for the 4 foot anomaly. In practice this was accomplished by connecting a scaler to a SR-300 logger and measuring cumulative counts at fixed depths for periods of time long enough to give sufficiently accurate calculated count rates.

Successive scaler readings were made at 0.1 foot intervals, starting near the bottom of the 4 foot ore zone and working upward. All count rates ob-

tained by this method were corrected for dead-time loss. Figure 2 is a plot of these corrected count rates. The 1/2 and 1 foot type anomalies derived from the 4 foot anomaly are shown in Figures 3 and 4.

15.2 CONCEPTS

15.2.1 Relating Type Anomalies to Grade

The calibration factor for gamma-ray logging units has been called the k-factor and appears as the constant of proportionality in the equation:

$$G\overline{T} = kA$$
 (1).

In this equation G is the average grade of an ore zone expressed as percent U308 by weight, T is the thickness of the zone, A is the area under the curve obtained by summing individual log deflections from one extremity of the anomaly to the other at 1/2 foot intervals. By convention the units of the log deflections are understood to be counts per second corrected for dead-time loss, and the area A is understood to be corrected errors due to absorbing fliuds in the hole and any other nonstandard conditions.

In a homogeneous, infinitely thick ore zone all log deflections will be equal, and any one of them can be represented by N. If we make log readings at 1/2 foot intervals, the number of readings will be 2T.

Therefore A = 2 NTand GT = 2 k NTG = 2 kN (2)

So, for an anomaly representing an infinite thickness of homogeneous ore, the ore grade can be determined by multiplying the peak deflection in corrected counts per second by twice the k factor.

In Figure 1 the defection of the peak of the 1/2 foot type anomaly is one-half the peak deflection of the infinite thickness anomaly. Combining this information with knowledge of the shape of the anomaly, we can establish equivalent grades at key positions along the 1/2 foot type anomaly. These equivalent grades are expressed in Table 1 as fractions of G, the grade of an imaginary infinite-thickness anomaly composed of an infinite number of identical type anomalies. Table 2 gives corresponding values for the 1 foot anomaly.

188

TABLE 1. EQUIVALENT GRADES AT 1/2 FOOT INTERVALS ALONG THE 1/2 FOOT TYPE ANOMALY. Distance from center of anomaly (feet) Equivalent grade 0.0 (1.00/2)G = 0.50G(0.40/2)G = 0.20G+0.5 +1.0 (0.08/2)G = 0.04G+1.5 (0.02/2)G = 0.01GTABLE 2. EQUIVALENT GRADES AT 1 FOOT INTERVALS ALONG THE 1 FOOT TYPE ANOMALY Distance from center of anomaly (feet) Equivalent grade (1.00/1.294)G = 0.7728G0.0 +1.0 (0.14/1.294)G = 0.1082G+2.0 (0.007/1.294)G = 0.0054G

15.3 MATCHING REAL AND SYNTHETIC ANOMALIES

If we know the grade distibution of a complex layered uranium ore zone, we can break it down into series of simple hypothetical 1/2 or 1 foot layers of homogeneous ore as shown in Figure 5. After individual log anomalies are plotted and composited for these hypothetical layers, the resulting synthetic anomaly will match the real anomaly quite closely.

On the other hand, if we do not know the grade distribution of a uranium ore zone but are given only a gamma-ray log of the zone, it is possible to deduce the grades of hypothetical layers whose individual anomalies can be composited to match the given log. The result is a 1/2 by 1/2 foot or 1 by 1 foot interpretation of the log. The program GAMLOG produces this kind of an interpretation by a trial-error method.

First, the deflection of the log to be interpeted are converted to equivalent grades using equation (2) after correcting for dead-time loss and other errors. These eqivalent grades are also taken as the first approximation of grades of the hypothetical layers are established using the relationships for type anomalies set forth in Table 1 and 2. The hypothetical anomalies are then composited to form a synthetic anomaly that is compared with the real anomaly at each log reading position.

After the comparision a second approximation of the grades of the hypothetical layers is established by increasing or decreasing the first approximation grades, depending on whether the synthetic anomaly is lower of higher than the real anomaly. Anomalies for the hypothetical layers are reestablished and recomposited, and another comparison is made between the real anomaly and the new synthetic anomaly.

This process is repeated up to ten times. If the comparatives results indicate that the absolute values of all discrepancies are less than 0.005 percent U308, the process is stopped short of ten iterations. The rate at which the synthetic anomaly approaches a good fit with real anomaly for a typical complex ore zone (AEC test pit N-5) is shown in Figure 6 where average absolute error is plotted for each successive iteration.

The iterative anomaly-matching method used in GAMLOG was based on type anomalies derived for AEC gamma-ray logging equipment. Presumably the response characteristics of certain commercial logging equipment are close enough to that of AEC equipment to validate GAMLOG interpretation of these other logs.

However, one should avoid using GAMLOG to interpret logs which show appreciable distortion due to logging at a speed too high for the time constant. Well logs used by the petroleum industry commonly fall into the latter category. However, it would be possible to modify GAMLOG so that these oil company logs could be interpreted if proper type anomalies were derived.

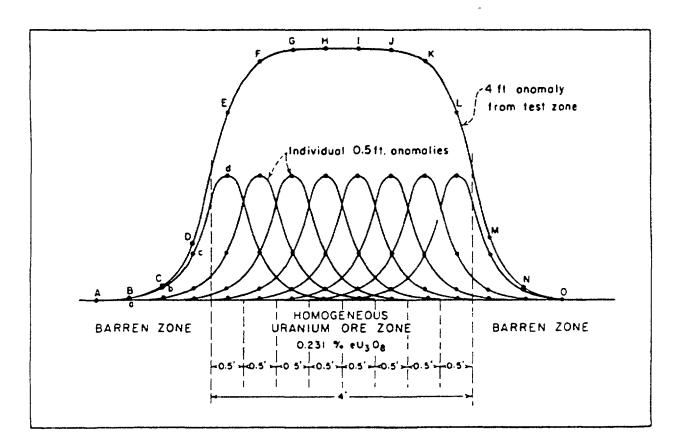
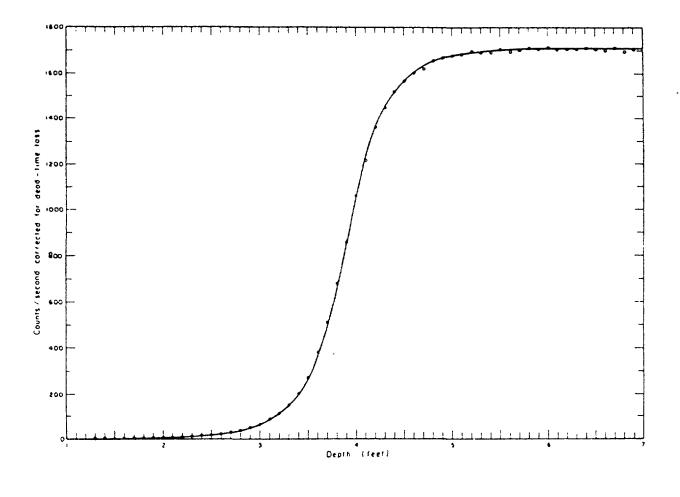
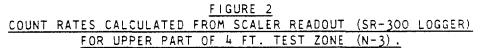
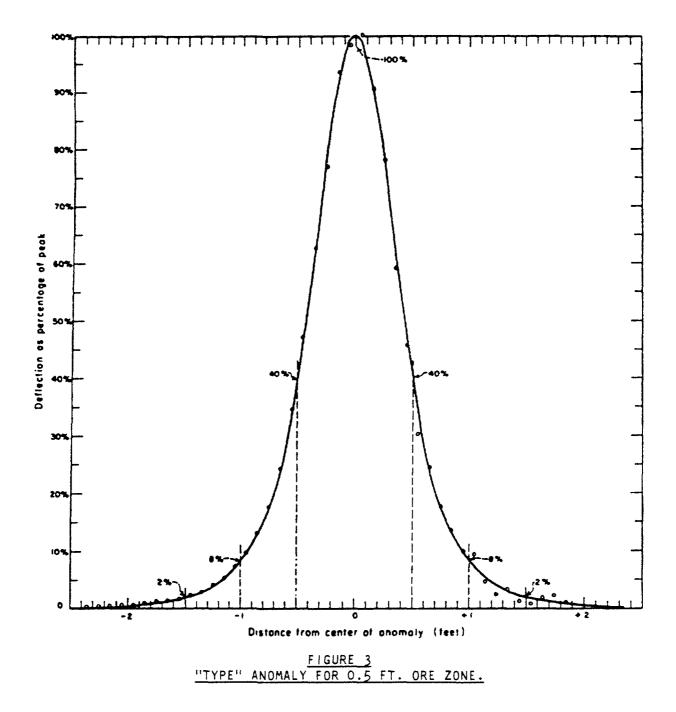





FIGURE 1REAL ANOMALY FROM 4 FT. ZONE AND HYPOTHETICAL ANOMALIESFROM 0.5 FT. ORE ZONES

t

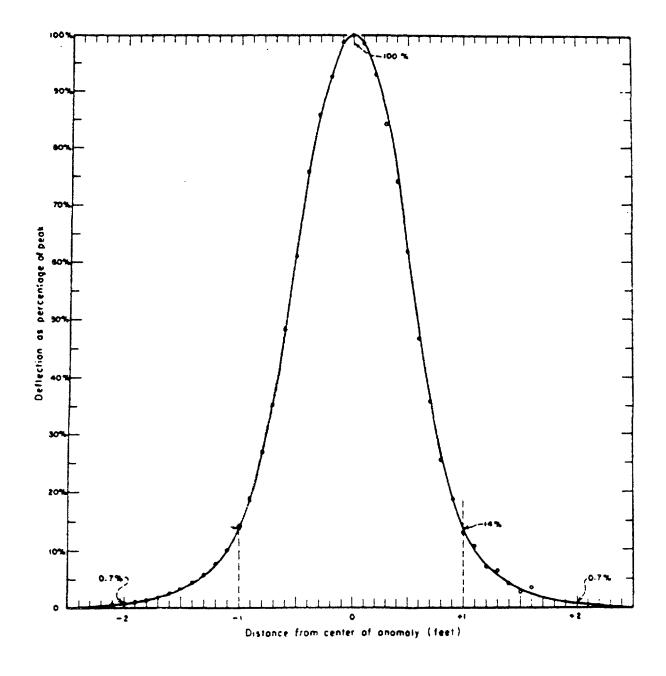
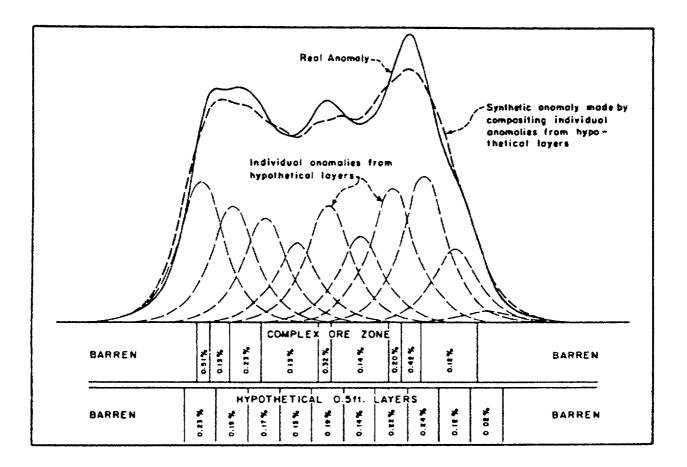
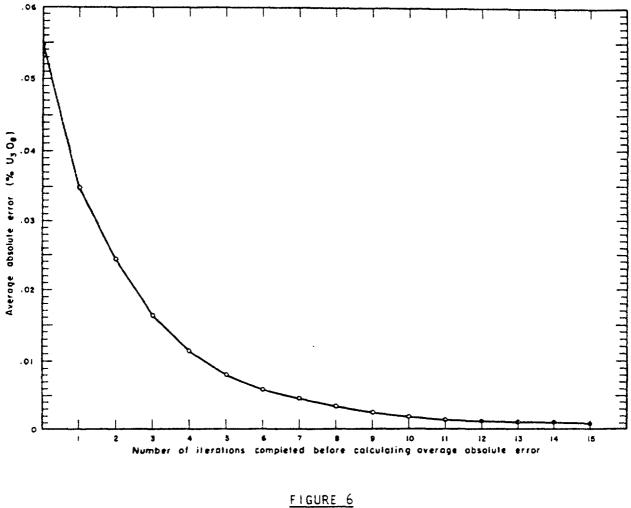




FIGURE 4 "TYPE" ANOMALY FOR 1 FT. ORE ZONE.

<u>FIGURE 5</u> COMPLEX ORE ZONE BROKEN DOWN INTO HYPOTHETICAL 0.5 FT. LAYERS WITH RESULTING ANOMALIES.

AVERAGE ABSOLUTE ERROR OF FIT BETWEEN SYNTHETIC ANOMALY AND REAL ANOMALY - A TYPICAL EXAMPLE.

1

<u> 16.0 APPENDIX B: STARDAT DATA - PROCESSED GANNA LOG DATA</u>

LISTING OF STARDATX _ INPUT DATA SET OF COMPUTED ORE GRADES IN HALF-FOOT INTERVALS

					•			• • • • (,	
	151F1U						256187	0106	6	STARMS
1	151		000040							
2	151		000084							
3	151		000895							
4	151		000565							
5 6	151		000135							
	151		000056							
7	151		000181							
8	151		000424							
9	151		000634							STARMS
10	151	001036	001364							STARMS
11	151	000411				000531				
12	151		001441						000029	STARMS
13	151		000054			000133	000120	000128	000109	STARMS
14	151	000053	000023	000025	000027					STARMS
	152F1U						236187		6	STARMS
1	152	4470-	000051	000057	000089	000145	000215	000230	000164	STARMS
2	152	000119	000109	000101	000102	000103	000109	000110	000111	STARMS
3	152	000123	000164	000238	000340	000508	000766	000972	001145	STARMS
4	152	001083	000871	000490	000336	000242	000196	000195	000215	STARMS
5	152	000258	000335	000719	001045	001496	002226	002959	002566	STARMS
5 6	152	001410	000676	000390	000271	000240	000232	000205	000165	STARMS
7	152	000136	000103	000098	000094	000090	000094	000108	000109	STARMS
8	152	000110	000115	000110	000098	000108	000138	000199	000322	STARMS
9	152	000781	002291	003512	004226	003785	002503	001467	000999	STARMS
10	152	000529	000364	000593	000585	000205	000171	000185	000199	STARMS
11	152	000211	000256	000244	000200	000242	000195	000147	000093	STARMS
12	152	000092	000117	000148	000151	000158	000111	000095	000092	STARMS
13	152	000053	000033	000032	000028	000032	000033	000036	000041	STARMS
14	152	000055	000093	000179	000293	000309	000211	000135	000112	STARMS
15	152	000098	000082	000056	000040	000034	000035	000033	000031	STARMS
	153F1U	-		-			246187	0106	6	STARMS
1	153	4160-	000028	000053	000095	000117	000055	000027	000027	STARMS
2	153		000055							
3	153	130 -	000087	000110	000190	000255	000347	000559	000633	STARMS
4	153	000565				000144				STARMS
5	153	000125	000120	000112	000100	000089	000094	000123	000130	STARMS
6	153	000125	000136	000142	000137	000133	000189	000183	000163	STARMS
7	153		000206							
8	153		000347							
7 8 9	153		000239							
10	153		000171							
11	153		000371							
12	153		000103							
13	153		000129						000064	
14	153		000264							
15	153	000046		-		-		2		STARMS
	154F1U		-		0 4	516 5 2	276187	0106	6	STARMS
1	154	4325-	000094	000093					000347	
	-		-					-		

.

197

2	154	000463	000358	000276	000223	000243	000292	000332	000371	STARMS
3	154	000267	000239	000192	000173	000150	000149	000141	000120	STARMS
4	154	000096	000084	000074	000068	000059	25 -	000044	000054	STARMS
	154	000001	000124	000086	000062	000058	30 -	000049	000015	STADMS
5 6										
	154							000086		
7	154							000353		
8	154	000181	000211	000252	000284	000269	000249	000291	000417	STARMS
9	154							002133		
10	154							000702		
11	154							001489		
12	154							001090		
13	154							000162		
14	154	000050	000051	000055	000013	000005	000010	000015	000020	STARMS
15	154	000016	000032	000038	000011	000021	000037	000051	000087	STARMS
16	154							000087		
17	154	000042		000470	000 522	000207	000127	,	000001	STARMS
'7	-	000042	000037		~ /	- 11	06197	0106	(
-	155F1U				-		306187		6	STARMS
1	155							000401		
2	155	000519	000582	000711	000479	000113	000075	000062	000039	STARMS
3	155	85 -	000056	000084	000134	000123	000123	000117	000119	STARMS
Ĩ,	155							000127		
	155							000466		
5 6										
	155							000984		
7	155	-						000049		
8	155	000061						000175		
9	155	000190	000084	000061	000050	40 -	000077	000138	000236	STARMS
10	155	000453	000277	000135	000105	000120	000170	000118	000092	STARMS
11	155		000072		-				-	STARMS
	156F10	-			0 4	515 5 3	236107	0106	6	
1	156F1U	-			•		236107	0106	6	STARMS
1	156	4340-	000074	000082	000092	000096	000099	000099	000096	STARMS STARMS
2	156 156	4340- 000097	000074 000093	000082 000097	00009 <u>2</u> 000110	000096 000129	000099 000155	000099 000161	000096 000161	STARMS STARMS STARMS
2 3	156 156 156	4340- 000097 000150	000074 000093 000112	000082 000097 000100	00009 <u>2</u> 000110 000087	000096 000129 000109	000099 000155 000159	000099 000161 000213	000096 000161 000250	STARMS STARMS STARMS STARMS
2 3 4	156 156	4340- 000097 000150	000074 000093 000112	000082 000097 000100	00009 <u>2</u> 000110 000087	000096 000129 000109	000099 000155 000159	000099 000161	000096 000161 000250	STARMS STARMS STARMS STARMS
2 3 4	156 156 156	4340- 000097 000150 000187	000074 000093 000112 000186	000082 000097 000100 000175	000092 000110 000087 000139	000096 000129 000109 000140	000099 000155 000159 000197	000099 000161 000213	000096 000161 000250 000132	STARMS STARMS STARMS STARMS STARMS
2 3 4 5	156 156 156 156 156	4340- 000097 000150 000187 000102	000074 000093 000112 000186 000065	000082 000097 000100 000175 000068	000092 000110 000087 000139 000073	000096 000129 000109 000140 000090	000099 000155 000159 000197 000113	000099 000161 000213 000230 000157	000096 000161 000250 000132 000240	STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6	156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217	000074 000093 000112 000186 000065 000157	000082 000097 000100 000175 000068 000171	000092 000110 000087 000139 000073 000163	000096 000129 000109 000140 000090 000144	000099 000155 000159 000197 000113 000130	000099 000161 000213 000230 000157 000109	000096 000161 000250 000132 000240 000097	STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7	156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104	000074 000093 000112 000186 000065 000157 ^00126	000082 000097 000100 000175 000068 000171 000187	000092 000110 000087 000139 000073 000163 000264	000096 000129 000109 000140 000090 000144 000343	000099 000155 000159 000197 000113 000130 000452	000099 000161 000213 000230 000157 000109 000557	000096 000161 000250 000132 000240 000097 000617	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8	156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632	000074 000093 000112 000186 000065 000157 ^00126 .0586	000082 000097 000100 000175 000068 000171 000187 000545	000092 000110 00087 000139 000073 000163 000264 000586	000096 000129 000109 000140 000090 000144 000343 000717	000099 000155 000159 000197 000113 000130 000452 000913	000099 000161 000213 000230 000157 000109 000557 001088	000096 000161 000250 000132 000240 000097 000617 001227	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9	156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141	000074 000093 000112 000186 000065 000157 ^00126 .0586 000986	000082 000097 000100 000175 000068 000171 000187 000545 001044	000092 000110 000087 000139 000073 000163 000264 000586 001343	000096 000129 000109 000140 000090 000144 000343 000717 001269	000099 000155 000159 000197 000113 000130 000452 000913 001379	000099 000161 000213 000230 000157 000109 000557 001088 001506	000096 000161 000250 000132 000240 000097 000617 001227 001717	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10	156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080	000082 000097 000100 000175 000068 000171 000187 000545 001044 002566	000092 000110 000087 000139 000073 000163 000264 000586 001343 003361	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058	000082 000097 000100 000175 000068 000171 000187 000545 001044 002566 002033	000092 000110 000087 000139 000073 000163 000264 000586 001343 003361 001106	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10	156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328	000082 000097 000100 000175 000068 000171 000187 000545 001044 002566 002033 000313	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328	000082 000097 000100 000175 000068 000171 000187 000545 001044 002566 002033 000313	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000135	000082 00097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000105	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000135 000351	000082 000097 000100 000175 000068 000171 000545 0010545 0010545 0010545 002033 000313 000313 000121 000401	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000186	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112 000153	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130 000087	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000135 000351 000065	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000186 000068	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112 000153 000074	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000105 000120 000148	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000130 000087 000253	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542	000074 000093 000112 000186 000065 000157 000126 .0586 000986 000986 002080 003058 000328 000328 000135 000351 000065 000816	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000186 000068 000643	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000130 000087 000253	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000135 000351 000065	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000088 000643 000084	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035	000099 000155 000159 000197 000113 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120 000120 000148 000222	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000130 000087 000253 000112	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000076	000074 00093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000135 000351 000065 000816 000073	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000186 000643 000643 000084	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000125 000177 000074 000291 000035	000099 000155 000159 000197 000113 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031 276317	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120 000148 000222 0106	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000130 000087 000253 000112 6	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542 000076 4370-	000074 00093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000351 000065 000816 000073	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118	000092 000110 00087 000139 00073 000163 000264 000586 001343 003361 001106 000267 000118 000068 000643 000084 000129	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 0000291 000035 395 5	000099 000155 000159 000197 000113 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031 276317 000122	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000105 000120 000148 000222 0106 00040	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130 000087 000253 000112 6 000031	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542 000076 4370-	000074 00093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000351 000065 000816 000073	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118	000092 000110 00087 000139 00073 000163 000264 000586 001343 003361 001106 000267 000118 000068 000643 000084 000129	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 0000291 000035 395 5	000099 000155 000159 000197 000113 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031 276317 000122	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120 000148 000222 0106	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130 000087 000253 000112 6 000031	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000076 4370- 000040	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000351 000065 000065 000065	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118 000096 000096	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 0000643 0000643 0000643 0000129 000052	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035 395 5 000166 000061	000099 000155 000159 000197 000113 000130 000452 000913 000452 000913 0003863 000567 000177 000112 000153 000074 000237 000031 276317 000122 000073	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000120 000148 0000222 0106 000040 000083	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130 000087 000253 000112 6 000031 000071	STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2	156 156 156 156 156 156 156 156 156 156	4340- 00097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000056 4370- 000040 000056	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000328 000351 000065 000816 000065 000050 000040	000082 00097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000096 000096 000097	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 0000643 0000643 0000643 0000643 0000129 000052 000041	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035 395 5 000166 000061 000065	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031 276317 000122 000073 000087	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000182 000120 000148 000222 0106 000040 000083 000102	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000130 000087 000253 000112 6 000031 000071 000115	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000076 4370- 000040 000056 000095	000074 000093 000112 000186 000065 000157 000126 .0586 000986 000986 000088 000328 000328 000351 000065 000050 000065 000050 000065	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118 000096 000097 000082	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 000126 000643 0000643 0000643 000052 000052 000041 000079	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000291 000035 5 000166 000061 000065 000091	000099 000155 000159 000197 000113 000130 000452 000913 001379 003863 000567 000177 000112 000153 000031 276317 0000237 000031 276317 000122 000073 000087 000110	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000105 000120 000148 000222 0106 000040 000083 000102 000194	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000130 000253 000112 6 000031 000071 000115 000551	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000056 000056 000056 000055 001500	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000328 000351 000065 000816 000050 000040 000081 002031	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000188 000096 000096 000037 000082 00082 000894	000092 000110 00087 000139 00073 000163 000264 000586 001343 00361 001106 000267 000118 0000643 0000643 0000643 0000643 000052 000052 000041 000079 001057	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 0000291 000035 395 5 000166 000061 000065 000091 001581	000099 000155 000159 000197 000113 000452 000913 000452 000913 000452 000913 000452 000452 000452 000452 000452 000153 000074 000122 000073 000073 000010 0001534	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000120 000120 000148 000222 0106 000043 000102 000194 000416	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000130 000488 000130 000253 000112 6 000031 000071 000115 000551 000175	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000056 000056 000095 001500 000126	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000351 000065 000816 000050 000040 000081 002031 000105	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000188 000096 000096 000037 000082 00082 00082 00082	000092 000110 00087 000139 00073 000163 000264 000586 001343 00361 001106 000267 000118 000068 000643 0000643 0000643 0000643 000052 000052 000052 000057 0001057 000134	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035 395 5 000166 000061 000065 000091 001581 000106	000099 000155 000159 000197 000113 000452 000913 001379 003863 000567 000177 000112 000153 000074 000237 000031 276317 000122 000073 000073 000087 000110 001534 00070	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000120 000120 000148 000222 0106 000040 000083 000102 000194 000416 000063	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000130 000087 000253 000112 6 000031 000071 000551 000175 000068	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000542 000056 000056 000095 001500 000126 000090	000074 00093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000351 000065 000351 000065 0000816 000040 000081 002031 000105 000102	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000808 000118 000096 000037 000082 000894 000121 000104	000092 000110 00087 000139 00073 000163 000264 000586 001343 00361 001106 000267 000118 000068 000643 000084 000129 000052 000041 000079 001057 000134 000098	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 0000291 000035 395 5 000166 000061 000065 000091 001581 000106 000089	000099 000155 000159 000197 000113 000452 000913 000452 000913 000452 000913 000567 000177 000112 000153 000074 000031 276317 000122 000073 000010	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000120 000148 000222 0106 0000148 000222 0106 000083 000102 000194 000416 000063 000108	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000188 000130 000253 000112 6 000031 000071 000115 000551 000175 000068 000120	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542 000076 4370- 000056 000095 001500 000126 000095 001500 000126	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000351 000065 0000816 000050 000065 000050 000065 000050 000065 000050 000081 002031 000105 000102 000215	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000096 000096 000096 000097 000082 00082 00082 00082 00082 00082	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 0000643 0000643 0000643 0000643 0000643 0000129 000052 000052 000041 000079 001057 000134 000098 000244	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035 395 5 000166 000061 000065 000091 001581 000106 000089 000312	000099 000155 000159 000197 000113 000130 000452 000913 000452 000913 0003863 000567 000177 000112 000153 000074 000073 000073 000073 000073 000073 000110 001534 000070 000100 000361	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000182 000120 000148 000222 0106 000040 000083 000102 000194 000416 000063 000108 000108	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000130 000087 000253 000112 6 000031 0000551 000175 000068 000120 000641	STARMS STARMS
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4	156 156 156 156 156 156 156 156 156 156	4340- 000097 000150 000187 000102 000217 000104 000632 001141 001873 003900 000419 000166 000177 000066 000542 000076 4370- 000056 000095 001500 000126 000095 001500 000126	000074 000093 000112 000186 000065 000157 000126 .0586 000986 002080 003058 000328 000328 000351 000065 0000816 000050 000065 000050 000065 000050 000065 000050 000081 002031 000105 000102 000215	000082 000097 000100 000175 000068 000171 000545 001044 002566 002033 000313 000121 000401 000058 000096 000096 000096 000097 000082 00082 00082 00082 00082 00082	000092 000110 00087 000139 000073 000163 000264 000586 001343 003361 001106 000267 000118 0000643 0000643 0000643 0000643 0000643 0000129 000052 000052 000041 000079 001057 000134 000098 000244	000096 000129 000109 000140 000090 000144 000343 000717 001269 003538 000713 000217 000125 000177 000074 000291 000035 395 5 000166 000061 000065 000091 001581 000106 000089 000312	000099 000155 000159 000197 000113 000130 000452 000913 000452 000913 0003863 000567 000177 000112 000153 000074 000073 000073 000073 000073 000073 000110 001534 000070 000100 000361	000099 000161 000213 000230 000157 000109 000557 001088 001506 003830 000549 000182 000120 000148 000222 0106 0000148 000222 0106 000083 000102 000194 000416 000063 000108	000096 000161 000250 000132 000240 000097 000617 001227 001717 004072 000488 000188 000188 000130 000087 000253 000112 6 000031 0000551 000175 000068 000120 000641	STARMS STARMS

10	157		000238							
11	157	000184	000119							
12	157	000051				000033				
13	157	000068	000092	000159	000313	000323	000261	000146	000099	STARMS
14	157	000051	000039	000026	000022	000019			• -	STARMS
	158F1U						286107	0106	6	STARMS
1	158	3505-	000064	000093						
2	158		000074							
	158		000054							
3										
4	158		000136							
5	158		000049							
6	158		000051							
7	158	000045				000194				
8	158		001401							
9	158	000797	001101	001474	001952	002038	001868	001073	000583	STARMS
10	158	000314	000221	000207	000164	000166	000203	000202	000176	STARMS
11	158	000187	000199	000222	000259	000232	000206	000199	000197	STARMS
12	158		000166							
13	158		000341							
14	158		000089							
	158		0000027							
15										
16	158		000407							
17	158	000233	000141	000119						
	159F1U	-				+36 5			6	STARMS
1	159		000055							
2	159	000136	000087	000069	000077	000097	000103	000094	000108	STARMS
3	159	000057	000045	50 ~	000067	000095	000166	000197	000153	STARMS
4	159	000134	000154	000200	000179	000114	000114	000109	000085	STARMS
	159		000057							
5 6.	159		000050							
7	159		000104							
8	159		000525							
9	159		001693							
10	159		000286							
11	159		000196							
12	159	-	000125							
13	159	000029		-	•	000106		-	000627	
14	159	000619	000438	000357						STARMS
	160F1U					+26 5 1		0106	6	STARMS
1	160	3500-	000043	000053	000067	000094	000133	000204	000211	STARMS
2	160	000172	000140	000116	000098	000100	000124	000169	000156	STARMS
3 4 5 6	160	000133	000114	000087	000084	000074	000071	145 -	000036	STARMS
Ĩ,	160		000072							
5	160		000134							
6	160		000790							
ט ר	160		001070							
7 8	160		001276							
0										
9	160		001577							
10	160		000438							
11	160		000030							
12	160		000434			000196	000148	000112	000065	
13	160	000050	000035	000027						STARMS
	161F1U					+20 5 2			6	STARMS
1	161	3585-	000054	000095					000155	STARMS
2	161		000230							
3	161		000059							
-										

.

.

4	161	000280	000245	000271	000311	000339	000275	000352	000335	STARMS
5	161	000215	000159	000133	000118	000116	000132	000156	000124	STARMS
6	161	000062	000073	000113	000105	000075	000087	000100	000134	STARMS
7	161	000212	000312	000351	000223	000177	000194	000220	000281	STARMS
8	161	000285	000281	000290	000303	000361	000448	000727	001152	STARMS
9	161	001052	000833	000815	000927	001091	001566	002141	001811	STARMS
10	161	001545	001439	001185	001081	000999	000912	000484	000298	STARMS
11	161	000400	000842	001041	000765	000557	000631	001245	001084	STARMS
12	161	000408	000276	000286	000199	000146	000127	000100	000080	STARMS
13	161	000059	000064	000064	000060	000058	000057	000063	000078	STARMS
14	161						000415		000446	STARMS
15	161	000404	000231	000158	000124	000087	000046	000038		STARMS
	162F1U					+36 5		0106	6	STARMS
1	162	3585-					000226			
2	162	000181	000091	000049	000031	000033	000029	000028	000028	STARMS
3	162	000033	000040	000062	000094	000090	000068	000050	000055	STARMS
4	162	000081	000067	000056	000062	000112	000204	000288	000219	STARMS
5	162	000176	000162	000159	000136	000099	000098	000097	000091	STARMS
6	162	000099	000108	000095	000070	000081	000112	000176	000341	STARMS
7	162	000490	000621	000969	001059	000832	000603	000161	000142	STARMS
8	162	000174	000137	000154	000253	000237	000166	000120	000121	STARMS
9	162	000143	000140	000156	000185	000213	000206	000216	000205	STARMS
10	162	000199	000177	000188	000207	000256	000206	000166	000217	STARMS
11	162	000314	000352	000417	000675	001018	001579	001446	000868	STARMS
12	162	000431	000435	000735	001057	001190	000797	000567	000348	STARMS
13	162	000257	000245	000222	000195	000150	000112	000069	55 -	STARMS
14	162	000050	000087	000197	000258	000268	000224	000163	000075	STARMS
15	162	000056	000046	000036						STARMS
	163F1U				0	436 5	96537	0106	6	STARMS
1	163	3595-	000069	000125	000144	000240	000252	000097	000074	STARMS
2	163	000078					000408			
3	163	000879					000407			
4	163	000702	000704	000602	000378	000261	000223	000213	000208	STARMS
5	163	000347	000300	000175	000126	000073	000048	000040	000036	STARMS
6	163	000031	000036	000043	000083	000092	000105	000188	000226	STARMS
7	163						000114			
8	163						000175			
9	163						000433			
10	163	000730	000476	000362	000358	000342	000430	000769	001844	STARMS
11	163						000500			
12	163						000097			
13	163						000082			
14	163		000207	000388	000410	000206	000106	000081	000054	
15	163	000050								STARMS

,

<u>17.0 APPENDIX C: OUTPUT LISTING FROM URDAT RUN</u>

.

The following example run was made using the programs and data sets provided in the attached diskettes.

ATA ANALYSIS OF PRIMARY U-ASSAY FILE *6AMDAT4 *, DATE: JAN 88 D: URDAT RUN UN TEST FILE *6AMDAT.	PA	6E 1
D INTERMEDIATE FILE OUTPUT REQUESTED. RUN BY:PDV		um
	AREA (H ND. (SA	
7000.5. 5000 5000:150.0. 121:100: 20 : URDAT :	AAA 🗸 TE	
U308 CHEMICAL OF CORRECTED EQUIV. RADIOMETRIC ASSAYS.		
BOT DPTH THK. GRADE :BOT DPTH THK. GRADE 'BOT DFTH THE. GRADE :BOT DPTH THE. GRADE :BOT DPTH (FT.) (FT.) U30B : (FT.) (FT.) U30B : (FT.) (FT.) U30B : (FT.) (FT.) U30B : (FT.)	THK. 6RA (FT.) U3	1 80
51.0 1.00 .050 70.0 5.00 .1501 B7.0 3.00 .040 105.0 4.00 .30011 115.0 53.0 2.00 .020 74.0 4.00 .020 B9.0 2.00 .060 107.0 2.00 .060 117.0	2.00 .0	30
55.0 3.00 .060 78.0 4.00 .050 91.0 2.00 .200** 109.0 2.00 .040 119.0	2.00 .0	46 1
66.0 4.00 .020 : \$2.0 4.00 .090 , 96.0 5.00 .1007 , 111.0 2.00 .1007 ; 121.0 65.0 5.00 .1007 : 84.0 2.00 .30077; 101.0 5.00 .35077; 113.6 2.00 .40077;	2.00 .0	016 i
	111	mú
F: FV. , (00RD. 00FD, (0FFTH) SMP! (01D) CODE	AREA H	MFLEE
7000.5. 5000 5000/150.0. 100. 20. URBAT	HAA TE	ŧ Stal
NO ASSAYS OR DEPTH RELORDED, ASSUME HOLS (SAMPLE) IS BARREN.		
	m	m
COLLAR 'NORTH EAST : PIT :DPTH:BOT:SMPL: PRPRTY ELEV. : COORD. :DEPTH:SMPL:DXD:CODE. CODE . CODE .	AREA : H NÛ (SA	
11000.5: 6000 5000:150.0. 466:100: VI	VVV TE	
U308 EQUIV. RADIOMETRIC (UNCORR. FOR DISEQUIL.) ANDV205 ASSAYS.	1\$1	11111
BOT DETH THE GRADE GRADE (BOT DETH THE GRADE SRADE (BOT DETH THE GRADE SRADE (BOT DETH THE)	GRAUE E	FADE
(FT.) (FT.) U308 V205 (FT.) (FT.) U308 V205 (FT.) (FT.) (GT.) U308 V205 (FT.) (FT.)		V205
401.6 1.00 .050 1.050 414.0 2.00 .020 1.000 435.5 2.00 .020 .020 451.0 2.00 403.0 2.00 .020 1.020 424.0 10.00 .010 .050 437.5 1.00 .010 2.000 453.0 2.00	.020	.000
408.0 5.00 .040 2.000 424.5 .50 .200xx 1.000 447.5 10.00 .010 .200 455.0 2.00 410.0 2.00 .100x 5.550 429.5 5.00 .040 4.000 448.0 .50 .250xx 5.000 465.0 10.00	.010	2.000 .200
412.0 2.00 .1501 .500 / 433.5 4.00 .5001 5.550 / 44°.0 1.00 .020 .100 / 465.5 .50	.020	.209
COLLAR ; NORTH EAST ; PIT :DETH:BBT:SMPL; PRPRTY ;	APEA H	IBLE
COLLAR NORTH EAST PIT :DPTH:BDT:SMPL: ELEV. COORD.:DEFTH:SMPL:DXDICODE: CDDE	APEA + ND. 1 (54 AAA - TE	IOLE IMPLE)
COLLAR NORTH EAST PIT :DFTH:BDT:SMPL: ELEV. COORD. :DEFTH:SMPL:OXD:CODE: CDDE	APEA + ND. 1 (54 AAA - TE	IOLE IMPLE)
COLLAR : NORTH EAST : PIT :DFTH:BDT:SMPL: PRPRTY : ELEV. : COORD.: DEFTH:SMPL:OXD:CODE; CDDE 7000.0: 5055 &055:150.0: 300:100.611! URDAT URDAT URDAT 0308 EQUIV. RADIOMETRIC ASSAYS, UNCORRECTED FOF DISEQUILIBRIUM. URDAT BOT DPTH THY. GRADE : BOT DPTH THK. GRADE : BOT DPTH (FT.) (FT.) (FT.) US08 :	APEA + ND. 1 (54 AAA - TE	IOLE IMPLE)
COLLAR : NORTH EAST : PIT :DFTH:BDT:SMPL: PRPRT: ELEV. COORD. COORD.:DEFTP:SMPL:DXDICODE: CODE 7000.0: 5055 & b055:150.0: 300:100.611: U30B EQUIV. RADIOMETRIC ASSAYS, UNCORRECTED FDF DISEQUILIBRIUM. URDAT BOT DPTH TH: GRADE : BOT DPTH (FT.) (FT.) (FT.) (FT.) (FT.) (FT.) 134.0 4.00 .050	APEA + ND. 1 (54 AAA - TE	IOLE IMPLE)
COLLAR : NORTH EAST : PIT :DFTH:BUT:SMPL: PRPRTY : ELEV. COORD. COORD.:DEFTH:SMPL:DXDICODE: CDDE 7000.0: 5055 6055:150.0: 300:100.611 URDAT. U30B EQUIV. RADIOMETRIC ASSAYS, UNCORRECTED FDF DISEQUILIBRIUM. URDAT. BDT DPTH THY. GRADE :BDT DPTH (FT.) (FT.) (FT.) (FT.) (FT.) U308	APEA + ND. 1 (54 AAA - TE	IOLE IMPLE)

202

, 						چینے جسی دونی ہے۔ یہ یہ کا جانبارسے				
COLLAR : NORTH ELEV. COORD.	COORD. DE	PTH:SMPL:OX	DICODEIDPTHI	(LAST) 1 T	INE (FACTIC	120: AIR:EPS/I BRR:CORR: (LAS 28:1.00:	INCHILOG- IFULL	CODE	₩3. , :	HDLE (SAMFLE)
7203.01 7930	93761	15189110	0, F1U: 230,.0	00003301	3.01 NO 11.	28:1.00:		URDAT	BEE	, TEST 3 ו / נוגנונו/
GAMMA LOG INTER	PRETED VALU	IES; DATA:	UNCORRECTED CP	S. DAT	E L066ED: 0/	′ U				\
	HE. 5RADE T.) U30B	BOT DPTH		BOT DPTH	THK. GRAI (FT.) U31		THK. GRADE (FT.' U3DB	IBOT DETH		GRADE !
1592.0 1592.5 1593.0 1593.5 1594.6 1594.5 1594.5 1595.6		1596.5 1597.0 1597.5 1598.0 1598.0 1599.5 1599.5 1600.0 1600.5 1601.0	.50 .049 .50 .081	1 1603.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DE 1607.0 J5 1607.5 J5 1608.0 J3 1608.5 J5 1609.0 J5 1609.0 J6 1610.0 J6 1610.0 L1 1610.5	.50 .000 .50 .013 .50 .057 .50 .099 .50 .000 .50 .005	1622.5 1624.0 1624.5 1625.0 1625.5 1625.5 1626.5 1626.5 1626.5	.50 .50 .50 .50 .50 .50 .50 .50	.001 .009 .027 .008 .005 .005 .006 .008 .008
										mm
COLLAR NORTH ELEV. COORD. 7211.0: 7780 64MMA LO5 INTERF	CDORD. : DE 9198.	FTH:SMPL:DX	D:CODE:DPTH. U. F1U, 329:.0	(LAST) : T 9900330,	IME IFACT.CO 3.01 ND 11.	28:1.00	NCHILOG- IFULL ST) TYPE ISCALE I I(IN) IA3	E. CODE	NC. ;	HCLE (SAMPLE), # . TEST 4 . -#########
BCT DPT4 TH	IF. GRADE	BOT DETH	THK. SFADE	POT DPTH	THK. GRAD	E 1801 DPTK	THE. GRADE	IBOT OPTH		65.ADE
(FT.) (FT	(.) U308	(FT.)	(F1.) U308	(FT.)	(FT.) U30	!	(FT.) U300	(FT.)	(+ (,) 	U308 ,
1583.5 .5 1584.0 .5 1585.0 .5 1585.5 .5 1586.0 .5 1586.5 .5 1587.0 .5 1587.0 .5 1587.0 .5 1587.5 .5 1587.5 .5 1589.5 .5 1589.5 .5 1599.5 .5 1591.0 .5 1591.5 .5	55 .007 50 .007 50 .004 50 .021 50 .021 50 .024 50 .024 50 .024 50 .024 50 .041 50 .025 50 .027 50 .027 50 .012 50 .012 50 .012	1592. c 1592. c 1593. o 1593. o 1594. o 1594. o 1595. c 1595. c 1595. c 1595. c 1595. c 1595. c 1596. c 1597. c 1507. c 150	.50 .1251 .50 .9265 .50 .46511 .50 .5065 .50 .068 .50 .068 .50 .094 .50 .068 .50 .22418 .50 .36311 .50 .36111 .50 .36111 .50 .25011 .50 .086 .50 .058	1601.5 1602.0 1602.5 1603.0 1604.5 1604.5 1605.0 1605.5 1605.5 1605.5 1605.5 1605.5 1605.5 1605.5 1605.5 1605.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 . 1609.5 9 . 1610.0 0 1 1611.5 233. 1612.0 153. 1612.5 733. 1612.5 733. 1613.5 733. 1613.5 733. 1614.0 733. 1614.0 4 1615.5 9 1 1616.0 9 1 1616.5	.50 .004 .50 .012 .50 .002	1621.5 1622.0 1622.5 1622.5 1623.5 1623.5 1624.9 1624.5	.50 .50 .50 .50	1.464\$\$; 1.379\$\$ 2.22\$\$; .626\$.256\$\$ 1.524\$\$ 1.432\$\$.000 .128\$.053 .000 .033 .000 .033 .000 .033 .000 .009 .009

•

•	DORE. E	DORD.IDI	EPTHISHPLI	JXD:CODE	IDPTH:	(LAST) (1	THE FAU	CTICORRI	AIRICPS/1 Corri (Las	T) (TYPE	E ISCALE	CODE	: NŪ. '	TEST :
Hrn LOJ 1 BJT DPTH (FT.)		TEL VALI GRADE UJOB	UES; DATA: :BOT DPTH : IFT.)	1NCHES The.	DEFL.(#	(ECTL). DA1 (B01 DFTH	THF.	t: c/ v 	BCT LPTr	 THr.	EPADE	.201 ДРТН , (FT.)	 Тнк. (FT.;	- 111111 GRADE UJDE
1571.5 1571.6 1572.5 1572.5 1572.5 1572.5 1572.5 1574.5 1574.5 1575.5 1575.5 1575.5 1576.6	.50 .55 .55 .55 .55 .55 .55	.008 .000 .041 .035 .929	1	.50 .50 .50 .50 .50 .50 .50 .50 .50 .50	.025 .1741 .29688 .1068 .1378 .1308 .049 .081	1 1601.5 1602.0 1602.5 1603.5 1603.5 1604.0 1604.0 1604.5 1605.6 1605.6 1605.7 1605.6 1605.7		.005 .005 .007 .007 .005 .005 .006	1606.5 1607.0 1607.0 1608.0 1608.0 1608.0 1608.0 1609.0 1609.0 1610.0 1610.0 1610.0	55555 5555 5555 5555 5555 5555 5555 5555	.000 .013 .055 .009	, 1623.5 , 1614.0 , 1614.5 , 1625.6 , 1625.6 , 1625.9 , 1626.9 , 1616.5	.50 .50 .50 .50 .50 .50	.001 .009 .020 .005 .005 .005 .005 .005 .005
LLAR , NO														
211.J.	789. 789.	3346. 61 9198	EPTH ISHP LI	DAD CODE 100 ¹ AJI	.DPTK. 5290	(LAST) (1 1000-030	ITHE (FA) 3.0 [°] N	CT.CORF 3 .1.28	, AIFICES I CORR (LAS 1.0)	T) 71P	E SIRLE	E CODE	AREA NC.	HŪLI (SAMF) TEST -\$\$\$\$
11.J.	30RE. C 789. INTERFPE TH*.	33RD. DI 9198 7EC Vali 5Pade	EPTH:5MPL:1	DID CODE 10C ¹ ADI INCHES 	DPTH 329 DEFL. (F GPADE	(LAST) (1 1000-030	(IME (FA) 3.0 N 7E LJ65E TH*.	CT . CORF 0 1.28 0: 07 0 Grade	.CORR (LAS	ין די	E SCRLE .(1%)	E CODE	NC. 200	(SAMF) TEST

														_111111
ELEV. 1 (raest.	C0060.:0F	FPTH!SMPL:	BIDICODE	IDPTR:	0.4519	TIME :FA	CTICORRI	50881 (LAS	TI TYP	F 150019	PRPRTY	- N G - 3	CONDI.
7203.01	793ê	9376:	5189	100: F11	2301.0	0000330;	3.0 N	0 11.28	.94	:X3	i (1N) i	URDAT	BEE :	TEST
			JES: DATA:											-111111
ROT DET	 H THE			 7Ht	 68005		 THr			 ามะ			 14k	 60475
(FT.)	GET.) U3DB	(FT.)	(FT.)	USOB	(FT.)	(FT.)	0308	(FT.)	(FT.)	U308	BOT DPTH	(F1.)	
1591.5 1592.0	5.50	. 004 . 000	1596.5 1597.0	.50	.022 .035	1601.5	.50	.002	1606.5	.50 .50	.005	1623.5 1624.0 1624.5 1625.5 1625.5 1625.5 1626.0 1626.5 1627.0	.50 .50	.009
1592.5	5 .50 c .50	.032	1597.5	.50 .50	.1741	: 1602.5 : 1603.0	.50 .50	.005	1607.5	.50 .50	.000 .013	1624.5	.50 .50	.027
1593.5	5 .5e	000	1595.5	.50	.1061	1603.5	.50	.003	1608.5	. 50	.059	: 1625.5 : 1626.0	.50	.005
1594.5	5 .50 9 .59	.025	1599.5	.50 .50	.1301	1604.5	.50 .50	.00£	1609.5	.50	.000	1626.5	.50 .50	.008 .002
1595.5	5 .50 0 .50	.008 .016	1600.5	.50 .50	.081	1605.5	.50 .50	.011	1610.5	.50 12.50	.003			
ITHOLOGI SEPTE TO	IC UNIT TOP OF	CODE: JE UNIT: S	112 JM13 10. 100.	JM14 J 150, 10	M15 JH1 90, 1150	5 3M17 1200, 1	JM18 JM 250, 150	19 3H20 0. 1600.	1610.5 1623.0 3M21 JM 1650. 170	22				
														-11111
LLAR : 1	NORTH	EAST : F	IT IDPTH:	BOTISMPL		-FACTOR:	DEAD ICR	IT: H20:	AIR:CPS/I	NCHILOS	- 1F981	: PRPRTY :	AREA	ROLE
LEV. ; C	CGDRD.	COORD.:DE	PTHISHPLI	DXDICODE	DPTH	(LAST)	TIKE IFA	CTICORR	CORR; (LAS	T) TYP	E ISCALE	EL CODE	NG.	ISAMP
211.01	77Bu	9198 [.]	151851	100: F11	3291.0	00003301	3.0! N	0 11.28	.94			URDAT .	BBE	TEST
) ASSAYS	RECORDE	D: ASSUME	E HÛLE (SA	MPLE) 15	BARREN	TO DEPTH	SAMPLED.							
EFTH TO	TOF OF	UNIT: 5	ie. 100.	150. 10	00. 1150.	1200.1	250. 130	ú. 135ú.	JM21 JM 1400. 145	Ú.				
														mm
コドレートア	19966	00088 /09	PTHISHPUIN	AYD!CANE	DPTH:	(LAST) !	TIME IEA	FT:CORP:	CORR! ILAS	TI !TVP	- 260AL P	: PRPRTY : CODE	10	(50,60)
211 D	7780	9198	5185	1001 F10	329: 00	0000730	3 of N	0 11 2B	94			URDAT	REF	‡ 17237
			ES; DATA:											-11111
BGT DPTH (FT.)	H THI. (FT.	. BRADE	BOT DPTH	THK.	5RADE 11308	BGT DPTH	THK. (ET.)	SRADE U308	(BDT DPTH	THK.	GRADE	180T DPTH (FT.)	IHK.	6RADE U308
1501 5	5 50	004	15P4 5	 50	0000	1501 5	50	002	1596 5		005	1613.5		.001
1582.0	, 150 3 .50 5 .50	.000	1587.0 1587.5 1589.0 1588.5	.50	.035	1592.0	.50	.00Ê	1597.0	.50	.003	1613.5 1614.0 1614.5 1615.5 1615.5 1615.0 1615.5 1616.0	.50	.007
1583.0	50	.008	1589.0	.50	.29611	1593.0	.50	.005	1598.0	.50	.013	1615.0	-50	.008 .005
1004.0) .50	.000	1589.0	.50	1371	1594.0	.50	.005	1599.0	.50	.007	1616.0	.50	300.
1584.5 1585.0				.50 .50	.1504 .049	1595.0	.50 .50	.006	1548.0 1598.5 1599.0 1599.0 1599.5 1600.0 1600.5 1613.0	.50 .50	.000	1612.0	.50 .50	.008 .002
1585.5) .50) .50	.016	1590.5	.50	.081	1595.0	.50 .50	.011	1 1600.5	.50 12.50	.003 .000	;		
1586.0		· ALC	12 JM13	14115 **										

.

111111111

 EAST
 : PIT
 :DPTH:BDT:SMPL:H2D
 :K-FACTOR:
 DEAD
 :CRIT: H2D:
 AIR:CPS/INCH:L0G :FULL:
 :FWRTY:
 AREA :
 H0LE:

 COORD.
 DEPTH:SMPL:OXD:CDDE:DPTH:
 (LAST)
 TIME
 :FACT:CORR:CORR:
 (LAST)
 :TYPE
 :SCALE:
 CODE :
 NO. :
 :SAMPLE):

 9198:
 :51E5:100;
 F2D:
 :329;.00000330;
 3.0;
 NO :
 !.28:
 .94:
 :X4
 :
 URDAT :
 BBE :
 TEST11

 COLLAR : NORTH : ELEV. : COORD. . 1 X 4 7211.0: 7780 11111111 JEANNA LOB INTERPRETED VALUES: DATA: PREVIOUSLY INTRPRTD, DATE LOBGED: 6/12 BOT DPTH THK. GRADE BOT DPTH THK. GRADE (BOT DPTH THK. GRADE (FT.) (FT.) U30B (FT.) (FT.) U30B (FT.) (FT.) U30B .022 1586.0 1201 1586.5 .31111 1587.0 .5005 1587.5 .8805 1588.0 .50 .50 .50 .50 .50 .50 .50 1583.5 1.000\$\$1 1588.5 .001 .878\$.555\$.000 1584.0 1589.0 .50 .50 .50 .50 1584.5 1589.5 .022 .1101 1525.0 1585.5 .060 . ALL DATA FILES FOR RUN HAVE BEEN PROCESSED. DATA ANALYSIS OF PRIMARY U-ASSAY FILE "SAMDATA ID: URDAT RUN ON TEST FILE "SAMDAT". NO INTERMEDIATE FILE OUTPUT REQUESTED. RUN BY:PDV ", DATE: JAN 88 PAGE 1 **** SUMMARY DF HOLE STATISTICS **** TOTAL NUMBER OF HOLES PROCESSED FOR RUN/BLOCK = 12; OF THESE: 0 10 HAD SAMPLE ASSAY DATA. 0 2 HAD NO ASSAYS REPORTED ["BARREN"]. "PEAK-GRADE-ST" SUMMARY; HOLES WITH SAMPLES, AT OR ABOVE THE INDICATED CUTOFF GRADE. TOTALING, AT LEAST, EITHER 4 FEET DR THE INDICATED 61. CUTOFF SRADE = .10 %U308, M1N. 5T = .40; # HOLES = 4 CUTOFF 6RADE = .30 20308, MIN. BT = 1.20; # HOLES = 1 CUTOFF 6RADE = .40 20308, MIN. 6T = 1.60; # HOLES = 1 CUTOFF GRADE = .50 XU30B, MIN. 6T = 2.00; # HOLES = 4

SAMPLES AT INDICATED "PEAK" GRADE ARE NOT NECESSARILY CONTIGUOUS; IF SAMPLES EDITED, PEAK GRADE VALUES APPLY ONLY TO SELECTED SAMPLES. <u>18.0 INDEX</u>

A

AIR CORRECTION FACTOR 36, 54 ARBITRARY CUTOFF GRADE 117 AREA NUMBER 28, 48, 50 ASSAYS 13, 14, 17, 18 ATTENUATION FACTORS 15, 35, 36, 37, 54

BACKSLOPE WASTE 117 BARREN 20, 21, 33, 34, 47, 51, 60 BASELINE CHANGE 59 BEDDED SANDSTONE TYPE 59, 117 BLASED SPACING 117 BLOCK 6, 117 BLOCK OUTLINES 117 BLOCKS 69 ORSAC 69 RESUV 69 SCOR 69 URDAT 69 BOREHOLE LOGGING 14, 15, 16, 17 BOTTOM ELEVATION 6 BOTTOM LITHOLOGIC UNIT 6 BREAK-EVEN COST CUTOFF GRADE 117

С

CAPITAL COST 117 MINE AND EQUIPMENT COSTS 117 OTHER COSTS 117 OVERBURDEN REMOVAL COSTS 117 PRO-RATED MINING WASTE COSTS 117 PROCESSING PLANT CAPITAL COSTS 117 UNDERGROUND PRIMARY DEVELOPMENT COSTS 117 COLLAR ELEVATION 15, 33, 34, 35, 47, 48, 50, 51 COMBINING THICKNESS 146 CONTINUATION RECORDS 49, 55 COORDINATES 32 COST-VS-VALUE CUTOFF GRADE 117 COUNTS-PER-SECOND 53 CPS 6, 14, 15, 16, 17, 55 CUTOFF GRADE 117 CUTOFF GRADES 138 CUTTOFF GRADE

MINIMUM 146

D

```
DATE LOGGED 57
DEAD TIME 54
DEAD TIME CHANGE 58
DEAD-TIME FACTOR 6, 15, 29, 37
DENSITY 117
DEPTH
  FIRST READING 56
  FIRST SAMPLE 33, 34
  FIRST SAMPLE INTERVAL 48
  HOLE WATER 35
  OXDIZED-NON-OXIDIZED CONTACT 48
  OXIDIZED-NON-OXIDIZED CONTACT 34
  PIT BOTTOM 6, 33
  PIT-BOTTOM 48
  TOTAL DEPTH '34
  TOTAL SAMPLED 21
DEVERGIE, P. 1, 2
DILUTING TO MINIMUM MINING THICKNESS 117
DILUTION THICKNESS AND GRADE 117
DISCOUNTED CASH FLOW RATE OF RETURN 117
DOLLAR 1
DOS 1, 14, 19
```

E

EAST COORDINATE 48 ECONOMIC CRITERIA 117 ECONOMIC RECOVERY COSTS 117

F

```
File Name Protocol 8
FLUOROMETRIC 13
FORPRINT 9
FORPRINT.EXE 9
FORPRIN2.EXE 9
FORTRAN 1
FORWARD COSTS 117
FULL-SCALE DEFLECTION 54
```

G

GAMDAT 10 GAMDATV 10 GAMLOG 1, 2, 4, 7, 187 K-FACTOR 188 REAL ANOMALY 189 SYNTHETIC ANOMALY 189 GAMLOG METHOD 15, 187 GAMMA-LOG 12, 14, 15, 20 GRADE 1, 2 GRADE DISTRIBUTION ANALYSIS 155 GRADE-TONNAGE DISTRIBUTION 117, 155 GRADEV 2 GRUNDY, W.D. 1

```
н
```

HEADER RECORD 49, 51, 53, 55 HOLE NUMBER 27, 28, 32, 48, 50

INCHES-OF-DEFLECTION 52, 54, 55 INDEPENDENT OPERATION 117 INTEGRATED OPERATION 117 INTER ORE MINING WASTE 117 INTERACTIVE ENTRY 129 ARROW -> 129 CAPS LOCK 130 DELIMITERS 129 FILE NAMES 130 IMBEDDED BLANKS 129 NUMERIC ENTRIES 129 QUOTES 130 INTERPRETED VALUES 56

K-FACTOR 15, 35, 36, 37, 54, 57, 188 K-FACTOR CHANGE 59

LITHOLOGIC RECORDS 59 LOG e 6 LOG TYPE 38 LOGGING PROBE 30 LOGGING SPEED 35, 57 LOGGING UNIT TYPE 54 LOGGING UNITS 30, 31, 32, 38 LOWER DILUTION 117 Μ

```
MACHINE READABLE 12, 15
MARGINAL COST CUTOFF GRADE 117
MAXIMUM STOPE WASTE THICKNESS 117
MDDAT
     2
MEEHAN, R.J. 1, 2
MINE EXTRACTION LOSSES 117
MINE SAFETY 117
MINE-MILL RECLAMATION COSTS 117
MINIMUM INTERMEDIATE WASTE THICKNESS 117
MINIMUM MINING THICKNESS 117
MINIMUM WASTE THICKNESS 117
  OPEN PIT 117
  UNDERGROUND 117
MINING DILUTION 117
MINING WASTE 117
  OPEN PIT 117
  UNDERGROUND 117
```

N

NEUTRON-ACTIVATION 13 NON-CONTIGUOUS SAMPLE FORMAT 50 NORTH COORDINATE 48

0

4

```
OPEN PIT ANALYSIS 155
OPEN PIT FACTORS 117
OPERATING COST 117
   APPLICABLE INDIRECT COSTS 117
  DIRECT MINING COSTS 117
  HAULAGE COSTS 117
  PROCESSING COSTS 117
  ROYALTY COSTS 117
ORE 117
ORE INTERVAL 117
ORE INTERVALS 155
ORE RESERVE 117
   AREA-OF-INFLUENCE 117
   BLOCK 117
  DILUTED 117
   EXTRACTABLE 117
   GENERAL OUTLINE 117
   GENERAL OUTLINE METHOD
                          117
   GEOLOGIC RESERVES 117
   GEOSTATISTICAL 117
   IN-PLACE RESERVES 117
   INFERRED 117
```

```
MEASURED 117
  REASONABLY ASSURED RESOURCE
                              117
  RECOVERABLE 117
  UNDILUTED 117
ORE-INTERVAL ANALYSIS 155
ORSAC 1, 2, 4, 7, 9, 117, 132, 146
   ALPHA1 CONSTANT
                   146
  COMBINED ASSAYS 146
  COMBINING THICKNESS 146
  CUTOFF GRADE 146
   ESTIMATED TONS AND GRADE 146
  FRACTIONAL TONNAGE 146
  RESERVES ANALYSIS OPTIONS 146
  STATISTICAL PARAMETERS 146
  SUMMARY FOR ALL BLOCKS 146
  TONNAGE FACTOR 146
  URANIUM 146
  VANADIUM 146
ORSAC.EXE 9
ORSAC2.EXE 9
OVERBURDEN WASTE 117
```

Ρ

```
P-O files 8
PATTERSON, J. 2
PEDAT 2
PIT AREA 117
PRELIMINARY ESTIMATES 117
PROCESSING RECOVERY 117
PROFIT 117
PROPERTY CODE 28, 48, 50
PROTORE 117
```

```
R
```

```
RADIOMETRIC 13, 14, 15, 16, 17
DISEQUILIBRIUM 17
DISEQUILIBRIUM COEFFICIENTS 18
EQUILIBRIUM 13
RANDOM SPACING 117
RANGE CODE 29, 30, 31, 32, 37, 38
READOUT INTERVAL 35, 54, 59
RECORD COUNT 47, 50
RECORD COUNT 0R INDEX 28
RECOVERY 117
RESTPRN 8, 9
RESTPRN.EXE 9
RESTPRN.EXE 9
RESTPRN2.EXE 9
RESTPRN2.EXE 9
RESUV 2, 4, 7, 117, 132, 138
CUTOFF GRADES 138
RESERVES ANALYSIS OPTION 138
```

```
URANIUM 138
URANIUM AND VANADIUM 138
URANIUM RESERVES 138
VANADIUM 138
VANADIUM RESERVES 138
RNGTBL 9, 31, 38
```

S

```
SAMPLE 12, 13, 14, 18
SAMPLE INTERVAL 13, 15, 47, 49, 50
   BIMETAL 49, 50
  FIRST 48
  UNIMETAL 50
SAMPLE SET DENSITY 117
SAMPLE SETS 13, 14
SAMPLE-TYPE CODE 1 48
SAMPLE-TYPE CODE 2 48
SAMPLE-TYPE CODE 3 48
SAMPLE-TYPE CODES 29, 30, 31, 32
SCOR 1, 2, 4, 7, 8, 9, 117, 132, 155
   COST-VS-VALUE 155
  ECONOMIC DATA 155
  ELEVATION OR DEPTH 155
  GRADE DISTRIBUTION ANALYSIS 155
  GRADE-TONNAGE DISTRIBUTION 155
  OPEN PIT ANALYSIS 155
  ORE INTERVALS 155
   ORE-INTERVAL ANALYSIS 155
   PHYSICAL DATA 155
  UNDERGROUND ANALYSIS 155
SCOR.EXE 9
SCOR2.EXE 9
SCOTT, J.H.
            1
SENSITIVITY 29
SKIPPED INTERVAL 56
SPECIAL ENTRIES 56
SPECTRAL ANALYSIS 13
SPLIT SHOOTING 117
STARDAT 10
STARDATL 10
STRIP LOG 12, 14, 16, 17
```

Т

TAX CONSIDERATIONS 117 TIME CONSTANT 35 TOP ELEVATION 6 TOP LITHOLOGIC UNIT 6 TOTAL COST-VS-VALUE 117 TYPE 1 MINING WASTE 117, 155 TYPE 2 MINING WASTE 117, 155 บ

UCON 2, 3, 4, 5, 7, 69, 132 "!#" INSTRUCTION 72 "!" INSTRUCTION 73, 74 ">#" INSTRUCTION 72 ">" INSTRUCTION 73, 74 "A" INSTRUCTION 72, 75 "B" INSTRUCTION 72, 73, 74 "C" INSTRUCTION 75 "E" INSTRUCTION 72, 75 "F" INSTRUCTION 72, 74, 75 "H" INSTRUCTION 75 "L" INSTRUCTION 72, 75 "O" INSTRUCTION 72, 75 "W" INSTRUCTION 72, 75 BCM 70 BCM FILE CONTROL MODULE 70 BCM IDENTIFIER 70 BCM TERMINATOR 70 BLOCK 70 BLOCK CONTROL MODULE 70 FCM (See BCM) 70 FCM IDENTIFIER 74 FCM IDENTIFIER RECORD 75 FCM ITENTIFIER 70 FCM TERMINATOR 70 FCM TERMINATOR RECORD - 75 FILE 69 FILE STRUCTURE 70 INSTRUCTION CARRY-OVER 76, 77 INSTRUCTION NEGATION 76 INSTRUCTION SUMMARY 74 INSTRUCTIONS 71 PRIMARY OPcodes 72 UCON files 8 UDAT 7, 19, 20, 22, 47 BOREHOLE LOG FORMAT 22 CONTIGUOUS BIMETAL FORMAT 19, 21 CONTIGUOUS FORMAT 19, 21 CONTIGUOUS UNIMETAL FORMAT 19, 21 CONTINUATION RECORD 21, 27, 28 DIRECTIONAL DATA RECORD 21 DIRECTIONAL RECORD 27, 28 FORMAT "A-E" 16, 19, 22, 29, 31, 52, 53 "A" 29, 31 "B" 29, 31 "C" 29, 31 "D" 29, 31 "E" 29, 31 "FIU" 16 "FNQ" 16, 19, 22, 35, 52, 53 "FIC" 16, 19, 22, 52, 53

•

F

```
"F11" 16, 19, 22, 29, 31, 52, 53
"F1U" 16, 19, 22, 52, 53
      "1" 29, 31
      CONTIGUOUS 34
      NON-CONTIGUOUS 16, 29, 34
   FREE-FORMAT TEXT 22
   GEOLOGIC RECORD 27
   HEADER RECORD 20, 27, 28, 29, 30, 35
   INTERMEDIATE FILES 19, 22
   LITHOLOGIC RECORD 21, 28
   NON-CONTIGUOUS FORMAT 19, 22
   PRIMARY FILES 19, 22
      FORMAT 19, 20, 21
UDAT files 8
UNIMETAL SAMPLE INTERVAL DATA 49
UPPER DILUTION 117
URAD 1, 7, 12, 13, 15, 17
URDAT 2, 7, 9, 132
URDAT.EXE 9
URDAT2.EXE 9
USUM 8
```

۷

VALUE 147 VANADIUM 138

WATER CORRECTION FACTOR 37, 54

Y

YOUNG, H.B. 2

.

To: Division of Publications International Atomic Energy Agency Wagramerstrasse 5, P.O. Box 100 A-1400 Vienna, Austria Date:

ORDER FORM

Please send me copy/copies of the Uranium Ore Reserve Calculation System (URAD) program, including the source code and documentation.

[] Payment is enclosed or
[] Enclosed are eleven diskettes of 5.25 inch double sided, double
density

Cost per program AS 225.00 (in eleven diskettes of 5.25 inch double sided, double density).